List of Available Video Tutorials

The following table lists all the ImageLab video tutorials which are currently availabe:

Video Topics Topic starts at
[min:sec]
First Impressions first impressions; a collage of some ImageLab functions 00:00
Introduction to ImageLab
(64 min)
introduction and welcome 00:07
goals of the webinar 02:08
overwiew: how to build a classifier 01:12
what is ImageLab? 04:09
the ImageLab workflow 05:35
importing the data 09:32
2D imager 10:49
image stack 18:39
preprocessing the data 24:26
spectral descriptors 32:46
chemoetrics toolbox 43:00
principal component analysis 44:34
color setup/editor 57:17
pixel masks 58:11
ImageLab scripts 59:09
LIBS Tool
(7 min)
general remarks on full LIBS spectra 00:05
LIBS tool 01:16
zooming the spectrum 01:55
database of optical emission lines 02:45
assigning spectral lines 04:37
spectral neighborhood 06:20
Classifiers
(31 min)
building a classifier from scratch 00:00
fruits basket hyperspectral image 00:30
overwiew: how to build a classifier 01:12
trimming the data 03:14
rescaling the image data 05:18
smoothing the specta 06:49
resampling the image 09:25
calculating the derivatives 10:50
defining spectral descriptors 15:00
specifiying the training data 19:39
creating a random forest classifier 24:39
image fusion of the classification result with a photo of the scene 26:33
creating a PLS/DA based classifier 28:01
Theoretical Aspects of
Spectral Descriptors

(25 min)
spectral descriptors, introduction 00:43
raw intensities 00:43
types of spectral descriptors 02:30
chemical knowledge 09:49
data space transformation 09:49
transformation of the data space 09:49
spectral descriptors, examples 12:57
benefits and disadvantages of spectral descriptors17:56
Principal Component Analysis
(16 min)
spectral descriptors, introduction 00:43
raw intensities 00:43
types of spectral descriptors 02:30
chemical knowledge 09:49
data space transformation 09:49
transformation of the data space 09:49
spectral descriptors, examples 12:57
benefits and disadvantages of spectral descriptors17:56
Spectral Filtering
(11 min)
introduction, explanation of the sample 00:00
multi-sensor image (EDX and Raman) 02:05
use of PCA 02:25
marking data in the score plot 04:02
masking empty pixels 05:05
interpretation of the loadings 08:00
cluster analysis of the loadings 09:45
PCA + image stack 12:14
Color Settings
(7 min)
contour plot properties 00:50
predefined colors 01:44
color palette 01:55
user defined colors 01:55
intensity distribution of pixels 03:11
contrast settings 04:07
auto color range 04:20
color palette editor 04:45
Spike Detection and Removal
(5 min)
maximum map 01:20
spike removal tool 02:05
License Installation
(3 min)
license installation 00:00