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Kurzfassung

Kiinstliche Datensédtze wurden erzeugt um die Auswirkung von unterschiedlichen
Eigenschaften spektraler Daten auf die Leistungsstéirke von Klassifikationsalgorith-
men zu untersuchen. Die generierten Datensatze, welche spektrale Daten reprasen-
tieren, basieren auf zwei unterschiedlichen Modellen und werden zudem in ihren
Eigenschaften (Rauschen, Grofe des Trainingsdatensatzes, Dimension des Daten-
raums und Separierbarkeit der Klassen) variiert. Anschliefend wird die Leistung
ausgewihlter Klassifikationsalgorithmen (k Nearest Neighbor, Partial Least Squares
Discriminant Analysis, Random Forest) fiir die erstellten Datensitze analysiert.
Diese Studie betont den Einfluss hoch dimensionaler Datenrdume (grofe Anzahl an
gewéhlten Variablen) auf die Verteilung der Daten im Merkmalsraum und damit
auch auf die Leistung der Klassifikationsalgorithmen.

Die gewonnenen Erkenntnisse werden angewandt um mittels IR - Imaging FFPE-
Gewebeschnitte zu klassifizieren und malignes Melanom zu erkennen. Verschiedene
Transformationen der spektralen Daten aus dem Fingerprint-Bereich werden ver-
wendet um Deskriptoren zu erstellen, welche ein hohes Ausmal an chemischer
Information beinhalten. Mittels der definierten Deskriptoren wird ein Random
Forest Modell erstellt, welches die Klassifikation unterschiedlicher Gewebe (Epi-
dermis, Bindegewebe in verschiedenen Formen, Melanom, Ulzeration) an neuen
Gewebeschnitten ermoglicht.
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Abstract

The effect of various attributes of spectroscopic data on the performance of selected
classification algorithms is investigated by creating artificial datasets. Datasets are
generated based on two different models and varied in noise, training data size, di-
mensionality of the data space and class separability. Subsequently the performance
of selected classification algorithms (k Nearest Neighbors, Partial Least Squares
Discriminant Analysis, Random Forest) is estimated. This study emphasizes the
impact of high dimensions (large number of features) on the data distribution and
on the classification performance.

The acquired knowledge is applied when classifying tissue types and detecting ma-
lignant melanoma in infrared hyperspectral images of paraffin embedded skin tissue
sections. Based on various transformations of the spectra in the fingerprint range,
selected spectral attributes are identified to encode maximum chemical informa-
tion. Those features are used for building Random Forest classifiers to enable tissue
identification (epidermis, different kinds of connective tissue, malignant melanoma,
ulceration) of new samples.
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Introduction

During the last two decades Spectral Histopathology (SHP) has emerged as a
promising technique for analyzing biological samples. The prospect of using imaging
systems based on infrared (IR) and raman spectroscopy in daily clinical practice
has motivated various groups world wide to develop new technologies and algo-
rithms.

Classical histopathology makes use of different dyes to retrieve information based on
the obtained stained tissue sections. The main idea of combining chemometrics and
IR imaging in SHP is to develop reliable methods for gathering chemical information
of the underlying tissue section, assigning labels to tissues and cells (e.g. cancerous
vs. non cancerous tissue), identifying biomolecular processes and much more.

Nowadays, big emphasis of SHP studies is put on creating "digital stains" of tis-
sue sections based on IR spectra by the use of classification algorithms. In this
work, such a classification is performed on tissue sections of malignant melanoma
lesions.

However, it has been noticed that it is worth putting thought into the data dis-
tribution of spectroscopic data and its effect on the performance of classification
algorithms. Various characteristics such as noise level, dimensionality of the data
set, amount of available training data and attributes regarding class separability
affect the obtained results of a classification algorithm.

Thus prior to classifying the melanoma sections, artificial data models representing
spectroscopic data of various characteristics are generated, classified by selected
classification algorithms (Random Forest, k-Nearest Neighbor and Partial Least
Squares Discriminant Analysis) and the results analyzed in Part I of this the-
sis.

The concept of classifiers is explained in Ch. 1. In Ch. 2 the generated data models
are outlined and the obtained results are listed and discussed in Ch. 3.

In Part II the gathered knowledge is applied to classify different tissue types in skin
tissue sections based on IR images. FTIR microscopy is used to acquire infrared
hyperspectral images from paraffin embedded and formalin fixed tissue sections
of human skins. The obtained hyperspectral images are pre-processed to account
for scattering effects and paraffin contribution as well as variations between the



samples. Subsequently a Random Forest classifier is used to classify the tissue
sections and create "digital stains".

Ch. 4 provides the required background on the histopathology of maligant melanoma
as well as molecular vibrations and infrared imaging. The methods of data acquisi-
tion and processing are explained in Ch. 5. In Ch. 6 the obtained results are listed
and discussed.



Part 1

Performance Evaluation of Selected
Classifiers Using Artificial
Spectroscopic Datasets






Chapter 1

Theoretical Background on
Classification Algorithms

1.1 Introduction to Classification Algorithms

Classification algorithms are automated procedures which identify patterns and
regularities in data sets in order to assign a property (class) to each sample. The
patterns are first identified using data with known classes and can then be used to
make predictions for future data with unknown class label. Today, classifiers are
applied for all different kinds of datal.

Chemometrics uses multivariate classification algorithms to extract information
from analytical chemistry datall]. In vibrational spectroscopy, classifiers are e.g.
used to automatically identify chemical structures by their spectrum. The following
description of classifiers mostly states spectroscopic imaging data sets as examples.
However, it is worth noting that the same concepts can be used for any kind of
data.

In spectroscopic imaging a spectrum is acquired for each pixel. The aim of using
classification algorithms in hyperspectral image analysis is to assign initially un-
known labels, also called classes, to each pixel (e.g. type of tissue, type of molecule
etc.), based on selected characteristics of their spectra. Those characteristics are
called features or spectral descriptors and are explained further in Sec. 1.2.

! The concepts of classification algorithms can be understood by an easy example. Let’s assume
that a vet, who examines birds, dogs and mice, created a database containing the characteristics
of the examined animals (so called features: height, weight, fur color), but failed to record
which animal (thus, data class) the properties belonged to. He has only recently started to
record the animal type. Thus, he knows the class of the last 50 entries of the dataset, but
also wants to assign a class label to the first 500 entries automatically. A classifier manages
to analyze the data structure of the 50 entries with known class, recognizes the data structure
and uses this structure to assign a class to the 500 unlabeled entries.
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Figure 1.1: Visualization of image pixels as data points in a 3-dimensional data space (3
spectral descriptors) for an EDX(Energy Dispersive X-Ray) spectrum of a sample of particulate
matter. Data are retrieved from [2].

There are mainly two groups of algorithms to be distinguished: classification and
clustering methods. Classification algorithms include a set of previously labeled
training data. The classes of the training set are also called ground truths. The
algorithm identifies a pattern in the labeled training set and based on this knowledge
a classification model is created. This model can be applied to classify data with
unknown labels.

Clustering algorithms find a pattern in the dataset without previous training. Thus,
no labeled training data are required. Examples for clustering methods are k-means
Clustering, Hierarchical Clustering and Fuzzy Clustering. However, in this thesis,
only classification methods are featured.

To correctly apply classifiers in hyperspectral imaging it is important to emphasize
the context of pixel and spectra in the mathematical model. Each feature of a
spectrum (e.g. wavenumber in vibrational/ UV-Vis spectroscopy, m/Z in mass
spectrometry) is one variable of the underlying mathematical model and is thus
equal to one dimension (one axis) of the d-dimensional data space. The data space
is also referred to as feature space.

Each of the N pixels represents one measurement with respective values of the d
features. It thus corresponds to one data point x;, ie[1, N| (generally called sample)
in this d-dimensional data space and can be represented by the feature vector

X; = (.I’i’l, T2, -~-Ii,d> ; dzm(xz) =dx1 (11)
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where each coordinate z; ; with j € [1, d] corresponds to the j-th spectral feature of
i-th pixel. The classes of the pixels (samples) are described by the response vector

yi-

Vi = (Yi1, Y2, -Yin); dim(y;) =r x1 (1.2)

There can be more than one different assignment (r < 1) for each pixel. Details
on the possible characteristics of the response matrix Y will be explained in more
detail in Sec. 1.1.

The feature vectors of all N pixels can be summarized in the design matriz X,
where each row corresponds to one pixel and each column to one feature. Similarly,
labels are summarized the response matriz Y.

11 T12 .- X1d

X _ 17271 ZL‘272 e xQVd (13)
IN1 IN2 --- ITNJ
Y11 Y12 - Yir

N B (1.4)
Ynai YnN2 --- YNy

To sum up, the task of a classifier is mapping the design matrix X to a pre-
dicted response matrix Y = f(X). The function f is estimated during the training
phase.

1.1.1 Characteristics of the Response Matrix

In classification problems y; is a categorical variable. Integer values (mostly 1 and
0 or 1 and -1) are used to represent the classes during computation. In contrast
to this, regression models assign a real number to a feature vector x;. As this
work is focused on classification problems the responses are always considered as
categorical.

In many cases the prediction is restricted to two classes, C; and C5. However,
there might also be » > 1 response variables included in the model. In general, the
following classification schemes can be distinguished [3].
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Binary tasks require to distinguish two classes, C; and C5. Each input sample
is assigned to one of the two classes. This can be represented by only one response
variable (r = 1) which takes e.g. the values y; = 1 for class 1 (e.g. cancer) and
y; = —1 for class 2 (e.g. non cancer)

Multi-class tasks require to distinguish between more than two classes C; to
Cy, with M > 2 . There are different approaches to multi-class problems. One
of the most widely spread is the One vs. All (OvA.) approach, which creates M
binary classifiers. Each of the M classifiers separates one class from all the other
classes. The prediction with the highest confidence score is chosen as the final class
assignment.

In contrary, the One vs. One (OvO) approach creates w classifiers, each

describing a binary problem between two classes. The class with the most positive
predictions is assigned as the final label.

The classification of polymers (e.g. polyethylen (PE), polypropylen (PP) and
polystrol (PS)) based on vibrational spectroscopy is consulted as a brief example.
The OvA approach creates the classifiers

e PE versus PP and PS,

e PP versus PE and PS,

e PS versus PE and PP
while the OvO approach creates

e PE versus PP,

e PE versus PS,

e PP versus PS.

Hierachial tasks also require to assign a sample to one of C'y; classes with M > 2.
In this case, the task is solved by a succession of binary classifiers. Each classifier
divides the previously separated data into further subsets. The result is a tree with
sub- and superclasses in a fixed hierarchy.

Multi-labeled tasks , also called multi-topic tasks, require to assign more than
one label to each sample. Multi-labeled tasks are not considered in this thesis.

Some classification algorithms - such as Random Forests - solve multi-class (hier-
archial) tasks inherently and a system of several binary classifiers is not required.
However, many algorithms (e.g. PLS-DA) depend on such a system of binary
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classifications, which can result in ambiguous classifications if the binary classi-
fiers are not tuned well. This led to the development of several more complicated
classification schemes for multi-class tasks. Nevertheless, studies show that when
using well-tuned classifiers as binary models simple OvA schemes provide results
comparable to any of the more complex approaches [4].

1.2 Spectral Descriptors

As already mentioned, in spectroscopy the features of the classification model (vari-
ables/columns in the design matrix) are derived from the measured spectra. There
are various ways to define those the features and thus map chemical informa-
tion.

Many researchers simply take all or selected raw intensities (e.g. every 10th wavenum-
ber in an IR spectrum) as features. However, raw intensity data are not very selec-
tive in most cases. They are prone to noise and may, depending on the analytical
method, be highly correlated if acquired with small spacing.

Furthermore, many spectra cover a large range on the x-axis (wavenumber in IR-
spectroscopy, m/Z in mass spectrometry) leading to a high number of features. The
phenomenon, that the resulting high dimensional dataspace can be problematic for
many mathematical models is described in Sec. 1.5[5].

Thus, is has been suggested to derive variables from the spectra, which encode
chemical information and use them for further analysis[6]. Using these so called
spectral descriptors reduces the dimension of data space and improves its structure,
because only variables that contain information relevant to the specific problem are
used.

The classification of skin tissue sections based on IR images in part Part IT is based
on such spectral descriptors. Thus, in the following thesis the term spectral descrip-
tor will be generally used to define the variables of a classification model.

Descriptors which have proven to be useful are illustrated and described in Fig. 1.2.
The abbreviations which are here introduced will be used in Part II.
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Figure 1.2: lllustration of various spectral descriptors. All illustrations, abbreviations and
methods are taken from the hyperspectral imaging software package ImagelLab (v.1.98, Epina

?(r)‘an, Pressbaum, Austria)[7].
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1.3 Model Creation, Selection and Assessment

Supervised classifiers use a set of N labeled training samples to create, optimize
and assess the classification model. It is very important to note, that the data
with which the performance of the model is estimated must differ from the data
with which the model is trained. Thus, the N labeled samples are divided into two
groups, training and test data.

N = Ntrain + Ntest (15)

The following nomenclature is used for training and test datasets.

Training data x; with the ground truth y;, i € [1, Nivain]

Test data x; with the ground truth g, i € [1, Njeg]

Furthermore, each classification algorithm depends on various parameters, which
have to be optimized before the final classifier can be applied to new datasets.
The setting of those parameters for achieving optimized classification performance
depends on the individual problem. Examples for such parameters are the number
of neighbors for k-Nearest Neighbor Classifiers or the number of trees for Random
Forests (compare Sec. 1.4).

Model selection is the process of optimizing those parameters. It is important to
consider the balancing act between sufficiently adapting the model to the train-
ing dataset and generalizing the model for application on an independent test
set (Sec. 1.3.1). Therefore, optimization of the parameters is controlled by cross-
validation, which is based on repeatedly taking out validation sets of the training
set (Sec. 1.3.3).

After creating the model and optimizing the parameters the final model is applied to
an independent test set (with known labels) for estimating the models performance.
The test set must not be included in the previous training and validation process
(model assessment).

Subsequently, the created and assessed model can be applied to new datasets with
unknown labels to classify them. The classifier performance, which has been esti-
mated previously using the labeled test set, is important for stating the statistical
reliability of the results.

The full process of model creation and assessment is illustrated in Fig. 1.3.

No general rule can be applied for the splitting ratio of test/training and train-
ing/validation sets. If Nj. is too small, the performance measures might be sta-

11
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Figure 1.3: Overview of model selection and assessment. 1) The labeled dataset is randomly
divided into test and training data. 2) The parameters are optimized and the final model
is selected via cross validation. Here, 10-fold cross validation is illustrated as an example.
Compare Sec. 1.3.3 for further understanding the cross validation process in box (2a). 3) The
final model is assessed by classifying the independent test dataset and comparing the predicted
(pred.) labels to the ground truth (gt.). Test data must not have been used during training
and model selection.
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tistically unstable. If Ny.q;, is too small the bias of the model might increase. The
more difficult it is to recognize the characteristics of the decision boundary in the
data space (e.g high noise, high dimensions), the larger Np,q;, has to be.

1.3.1 Model Complexity, Bias and Variance

As mentioned before, each classifier depends on specific parameters which determine
the characteristics - the complexity - of the classification model. On the one hand,
the model has to be complex enough to correctly map certain characteristics of
the data distribution in space (e.g. non linear decision boundaries). On the other
hand, in order to ensure possible generalization, the model must not be adapted
too strongly to the specific training set.

The quantities bias and variance are used to exactly describe this balancing act.
The bias describes the systematic difference of the predicted classes f(X) to the
ground truths f(X). [8, 9]

Bias[f(X)] = E[E(X) - f(X)] (1.6)

Thus, the bias increases with decreasing model complexity (e.g. k very large for
ENN or a linear decision boundary for a non linear problem) and the model fails to
correctly map the data distribution.

The variance describes the deviation of the prediction on the test set over different
training sets.

Varl[f(X)] = E[f(X)*] - E[f(X))* (1.7)

Thus, the variance increases with increasing model complexity (e.g. k = 1 for kNN
or a high-order polynomial decision boundary), as the model tends to adapt very
well to the specific set of training data. Training it with a different training data
set will result in a different model and finally in different predictions on the test
set.

To sum up, the aim is to create a model which is simple enough to predict the
labels of an independent test set as reliable as possible (generalization ability, low
variance), while being complex enough to correctly recognize the data distributions
(low bias).

This compromise is called variance-bias trade off and is illustrated in Fig. 1.4.
Models are created for different parameter settings, resulting in different model
complexities. The performance (in Fig. 1.4: prediction error) estimated on both, an

13
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independent test set and on the training set, is plotted over the model complexity.
One can see, that if the training set would be used for estimation of the model
performance the model would seem to improve with higher complexity. Computing
the performance on an individual test set, though, results in a minimum of the
prediction error curve for certain parameter settings. Estimating this minimum by
optimizing the complexity parameters is the fundamental task of cross validation

(Sec. 1.3.3).

training set

test set

Figure 1.4: lllustration of the variance-bias trade off for different model complexities. The
blue (red) data points correspond to class 0 (1) and the blue (red) region is the region in which
test data is assigned to class 0 (1). Top row: Scatter plots of training data with estimated
decision boundaries for different model complexities. Center row: scatter plots of test data
and previously estimated decision boundaries; bottom row: prediction error of applying the
classifier on the test set (dashed line; middle row) and the training set (solid line; top row)
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1.3.2 Performance Metrics

There are various ways to estimate the performance of a classifier, but all of them
are based on the confusion matrix. This matrix lists the correctly and wrongly
classified samples of each class separately and is illustrated in Fig. 1.5.

Ground Truth
1 1]

True Positive False Positive

1 (tp) (fp)

Prediction

0 False Negative BNIOERVECELIZE]
(fn) (tn)

Figure 1.5: Confusion matrix for a binary classifier with N, = 2 classes. To generalize, for
any N, the dimension of the confusion matrix is (V. x N,)

In the following thesis, the abbreviations TP, TN, FN, and FP are used for the
corresponding counts in the confusion matrix. Different metrics can be computed
using those values. As there is no universal performance metric which includes
all information in one number the selection of a metric or a combination of met-
rics, respectively, depends on the individual case. Although, the idea behind the
metrics for binary or multi-class problems is similar, the specific execution differs
slightly.

The most common metrics are listed for binary and multi-class tasks in Thl. 1.1
and Thl. 1.2.

Table 1.1: Metrics for binary classification [3]

Metric Abbr. Formula Description

Accuracy ACC Tﬁ% Overall effectiveness of a classifier, considering both classes
Error Rate ERR % Overall error of a classifier, considering both classes
Sensitivity (Recall, True Positive Rate) TPR % Ability to correctly identify positive samples

Specificity (True Negative Rate) TNR % Ability to correctly identify negative samples

Positive Predictive Value (Precision) PPV Tr?:riPFP Ability to only classify positive samples as positive
Negative Predicitve Value NPV % Ability to only classify negative samples as negative

The metrics used to assess multi-class methods are based on measures for binary
tasks. The confusion matrix is created for each binary classifier, with the entries

15



16 1.3 Model Creation, Selection and Assessment

TP, FP;, TN; and F'N;. The measures are computed in analogy to binary tasks
by micro- or macro-averaging (compare Tbl. 1.2).

Table 1.2: Metrics for multi-class tasks: T'P;, TN;, F'P; and F'N; correspond to the entries
of the confusion matrix of the i-th classifier (in case of "One vs. All" the classifier dividing
the i-th class from the rest). © and M indicate micro- and macro averaging. [3]

Metric Abbr. Formula Description
St rrrRTN Ny
c= - p - -
Average Accuracy ACC s N] . 1 Mean accuracy over all classes
c
ZNcl TP +£1§7I§JJ\\YII7‘+FN
Mean Error ACC J 4 = 2 Mean error over all classes
c
Ne
. .5 TPy . .
Micro-Recall TPR,, NCC*# Micro averaging:
2oLy TPj+FN; Sum of confusion matrix
counts over all decisions
Ne . A
c. TP, with subsequent rationing
Micro-Precision PPV, NXC:“=1 2
zc:l TPJ- +FP]
Nec
TN ;
Micro-Specificity TNRy o= J

SN N LFP.
Zc:l TNj+FPj

. sNe TN,
Micro-Neg. Pred. Value NPV, No C=
Lol TN +FN,
s Ne T

c=1 TP;FFN;
Macro-Recall TPRyp + Macro averaging:

TP Rationing counts of

Ne h binar nfusion matri
B PN TP ¥FF; eac binary confusio ‘at x
Macro-Precision PPV — with subsequent averaging
c
ZNC TNj
. c=1 TN; +FP;
Macro-Specificity TNRn e
c

Macro-Neg. Pred. Value NPV

The Receiver Operating Characteristics (ROI) is a widely used way of illus-
trating the relationship between sensitivity and specificity and is shown in Fig. 1.6.
It is based on the idea, that for each sample the classifier computes a value (com-
parable to a probability) for which a certain threshold has to be found in order to
label the sample. If this threshold is set to its extreme values, all samples will be
assigned to one class resulting in sensitivity = 1 and 1 — specificity = 0 (or the
other way round). The ROI is obtained by varying this threshold from one extreme
to the other.

A metric for the performance of a binary classifier is the area under the resulting
ROC (Area Under the Curve, AUC). If AUC = 0.5 the classifier is not able to
separate the two classes. AUC — 1 corresponds to a high performance.

In many works accuracy is used without stating the sensitivity or specificity. It has
to be emphasized that this approach can be problematic as the accuracy does not
consider whether the correctly classified samples belong to class 1 or 0.
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Figure 1.6: Receiver Operating Characteristics with AUC close to 1 (top row, well separable
classes) and close to 0.5 (bottom row, non-separable classes).

This problem can be explained well by the example of distinguishing cancerous
from non-cancerous tissue. Assuming that there are 50 samples of cancerous tissue
and 50 samples of non-cancerous tissue, two different scenarios are pointed out
in Thl. 1.3. Sometimes in medical diagnostics a lower specificity is accepted in
order to ensure a high sensitivity. In other words it is preferred to detect all
positives (cancerous tissue) correctly, while labeling also some non-cancerous tissue
as cancerous. However, other applications might require a high specificity. Thus,
the accuracy on its own is not sufficient as a performance measure.

1.3.3 Cross Validation (CV)

Cross Validation (CV) is one method to optimize the model parameters for the
individual problem. While there exist different variations of CV, in the following
k-fold cross validation is explained in more detail.

Basically, during CV models are created and assessed for each potential parameter
variation. Finally, the model resulting in the best performance is chosen (model
selection). CV is still a part of the training phase and the previously assigned test
set has thus to be left out completely. Otherwise the same data would be used for
model selection and subsequent assessment.

However, evaluating the various models trained during the model validation process

17



18 1.3 Model Creation, Selection and Assessment

Ground truth Ground truth

c n-c c n-c

’g c 40 0 E ¢ 50 10

Al n-c 10 50 Al n-c 0 40
(a) (b)

Table 1.3: Theoretical classification problem to illustrate the insufficiency of the accuracy
as the only performance measure. The classifier is supposed to discriminate cancerous from
non-cancerous tissue. There are 50 samples of both classes in the test set. a) and b) illustrate
the confusion matrix of two different scenarios which result in the same accuracy. However,
in case a) 20% of the cancerous samples are classified as non-cancerous while in case b) 20%
of the non cancerous tissue is classified as cancerous [a) ACC = 0.9, TPR = 0.8, SPC =1,
b) ACC =09, TPR=1, SPC =0.3].

requires again a test set. Thus, the previously assigned training set has again to
be subdivided into data with which the models are trained and data to evaluate
the models. Latter are referred to as walidation data. Mostly, the available num-
ber of training samples Ny.qin is low anyway, wherefore it would not be possible
to extract a completely independent validation set, which is sufficiently large to
provide statistically stable results while preserving sufficient training data to create
a generalized model.

Therefore k-fold CV can be used, which divides the training set into k subsets.
Subsequently, for each parameter variation, k models are created, each of which
uses (k-1) of those subsets for training and the remaining subset for assessment.
Finally, the mean performance of the k models is computed and compared to the
mean model performance metrics associated with the other parameters. The model
parameters resulting in the best mean performance are chosen. This procedure is
illustrated in box (b) of Fig. 1.3.

In many cases the minimum (for some metrics maximum) is located in a flat part
of the cross-validation curve. Thus, often the one-standard error rule is applied,
which selects the least complex model within one standard error of the best model
[9]. Selecting a model by means of the one standard error rule is illustrated in
Fig. 1.7.
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Figure 1.7: lllustration of parameter selection when applying the 1-standard error rule during
10-fold cross validation for a Random Forest Classifier. [Data are taken from a simulated
classification problem with d = 15 descriptors. Nypqinpc = 2500 for both classes (classes
are balanced). The shaded areas show the standard deviation of each parameter setting for
prediction error (= 1 - accuracy), 1-specificity and 1-sensitivity.

1.4 Examples of Classification Algorithms

In this thesis the following classification algorithms are considered and thus outlined
in the section below:

e Lk Nearest Neighbor (kNN) as it is one of the most trivial and intuitive
classifiers and often used as a reference for performance comparisons,

e Partial Least Squares Discriminant Analysis (PLS-DA) as it has been a com-
mon classifier in chemometrics over the last two decades,

e Random Forests (RF), as they tend to become the current standard for most
classification problems.

However, there are many other widely distributed algorithms for supervised learn-
ing, such as Support Vector Machines (SVM), Artificial Neural Networks (ANN)

19



20 1.4 Examples of Classification Algorithms

or Bayesian Classifiers.

1.4.1 k Nearest Neighbors (kKNN)

The k- Nearest Neighbor (ENN) algorithm is seen as the simplest classification
algorithm and classifies the test sample according to a majority votw on the class
labels of the k nearest training samples.?

Because of its simplicity, kNN is often used as a reference for comparison to other
algorithms. It is referred to as a lazy classifier, as no training phase is required®.
There are several variations of the algorithm, in the following the simplest imple-
mentation is explained in more detail.

Algorithm 1: k- Nearest Neighbors Algorithm

Training phase: In the simplest form it only consists of
storing the training data.

Classification Phase: For each test sample X; with
i€ [17 Ntest]

1. the distance d; ; = d(X;,x;) between X; and each train-
ing sample x;, j € [1, Nyyqin] is computed (mostly the
euclidean distance is chosen as a metric, in some cases
other metrics proof to be useful?),

2. the distances are sorted,

3. the k nearest training samples (smallest distance) are
selected,

4. a class is assigned to the test sample X; using the
ground truths of the k nearest training samples.
Mostly a majority vote is used to determine the class
of x;, i.e. the class which most of the k£ nearest training
samples have, is assigned to the test sample X;.

Parameter selection: The performance strongly depends on the chosen value
for k. For a binary classifier £ should be odd to avoid a ties assignment. For more
than two classes, even an odd k is not sufficient to ensure that there is not more
than one class with the majority of the & training samples (e.g. k =5 and 3 classes:

2 The kNN classifier is well described by the phrase "If it walks like a duck, quacks like a duck,
and looks like a duck, then it probably is a duck"(Dougherty, Geoff; Pattern Recognition and
Classification, An Introduction. page 101)

3 (Classifiers, which require a training phase are called eager classifiers.
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2 of class 1, 2 of class 2 and 1 of class 3)[10]. The value of k& determines the degree
of smoothing of the decision boundary. Choosing k£ = 1 results in a low bias but
a high variance |9, as the prediction only depends on one training sample close to
the test sample. The result is prone to noise.

However, a larger k increases the bias but reduces the variance[l11]. Furthermore,
a larger k increases the computation time. Thus, as there is no general rule for an
optimal £ it has to be determined by cross-validation.

Prerequisites: As kNN is based on a distance metric it is essential that each
descriptor is standardized (¢ = 0 and 0® = 1) to assure equal weight of each
descriptor, independent of its average magnitude|9].

Advantages and Disadvantages: As it is based on a distance measure, kNN is
prone to high dimensions. As a rule of thumb, at least ten times as many training
samples per class than number of descriptors (dimensions) are required to ensure
equal performance [10]. However, a high number of training samples also requires
high storage and computational capacity. Furthermore £NN is very susceptible to
local noise, which often leads to less satisfactory results.

Another disadvantage is that in its simplest implementation the algorithm does
not distinguish between the importance of each descriptor for the classification
decision. As during pre-processing the descriptors get standardized, a variation in
every dimension contributes the same to the final decision, although the decision
boundary might only lie in a subspace. Thus, in high dimensional problems £NNs
exhibit a high bias. Adaptive kNNs address this issue and are briefly discussed
later.

On the other hand it excels through its simple implementation and its suitability for
parallelization|10| and it is succesful in comparison to other classification algorithms
when the decision boundary is irregular|9].

# Same common metrics to compute the distance between x; and x; are listed in the following
table (X is the covariance matrix)[12, 13].

=

Minkowski distance d(Xz‘,Xj) = (Zf:ﬂxi,s - Xj,s|p>

[N

- Euclidean distance d(x;,%x5) = (Zle\xi’s — xj7s|2)

- Absolute distance (Manhattan distance) d(x;,x;) = Zlelxi,s — Xj s

Mahalanobis distance d(x;,%x5) = \/(xl - xj)T Y1 (% —x5)
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22 1.4 Examples of Classification Algorithms

In 1967 Cover and Hart have shown that for the £k = 1 classifier, that the asymp-
totic error rate (Nyqm — 00) is at most twice the Bayes minimum probability of
error. Latter is considered to be the ideal case with perfectly known probability
distribution|14].

Adaptions: Over the decades various adaptions of the kNN algorithm have been

published. One possibility is the weighted kNN (wkNN), which assigns a weight to

each of the k Nearest Neighbors to increase the influence of those training samples

in the decision, which are closer to the test sample. The weight function is based

on the distance d(X;,x;) (Shepard’s method) and can be e.g. an inversion kernel
(%

Wij X G OF & Gaussian kernel w;; o< —2= exp >—[12].

Other adaptions are the adaptive kNNs, which are especially useful for high di-
mensional problems. One example is the Discriminative Adaptive Nearest Neighbor
(DANN) algorithm introduced by Hastie and Tibshirani (1996)[15]. It is based
on a locally adaptive effective metric for computing neighborhoods, which empha-
sizes the descriptors with high contribution to the classification outcome. Linear
discriminant analysis is used to compute the local metric.

1.4.2 Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA is a supervised learning algorithm based on Partial Least Square(PLS)
Regression that was first introduced in the 1960’s by Herman Wold. Similar to
Principal Component Analysis (PCA) PLS is based on a change of basis of the
design and the response matrix, respectively.

In this section, only a summary of the most important concepts is given. However,
to fully understand the concept of PLS-DA it is instructive to shortly mention
the basics of PCA and put the two algorithms into comparison. This compari-
son, the mathematical background and the scheme of algorithms are outlined in
Appendix 6.3[1, 11, 16-19].

In contrast to PCA, which conducts a change of basis based on the covariance
matrix of the design matrix, PLS-Regression considers both, the design and the
response matrix, for the change of basis.

The change of basis applied to the design matrix X is different to the one applied
to the response matrix Y. However, the keypoint of PLS-Regression is that the
changes of basis are chosen in such a way that the covariance between the trans-
formed sample descriptors and results becomes a maximum.
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X=TV"'+E
Y=UW"+F (1.8)
T =BU

V is the transformation matrix which conducts the change of basis on X and is
called loadings matriz as it describes the contribution (= loading) of the original
variables (basis vectors of original basis) to the new variables (new basis). T con-
tains the coordinates of the samples referring to the new basis vector (columns of
V) and are called scores. E and F are the error matrices for both transformations
and are aimed to be minimized.

In analogy, W are the loadings of Y and U are the corresponding scores. The
condition of maximum covariance between U and T

1
cov(T,U) = mTTU — mazx (1.9)

is forced by Eq. (1.8).

Based on this transformation, a discriminant analysis (DA) can be conducted using
the computed scores to separate the data into different classes. The total pro-
cedure is then called PLS-DA and is summarized in Alg. 2. Details on different
algorithms (NIPALS and SIMPLS) to compute the PLS components are outlined
in the appendix. In this section PLS-1 (based on NIPALS) is used for classifying
the simulated data, as the problem is binary. If a problem requires multi-class
classification, the SIMPLS algorithm leads to better results than the PLS-2, which
is also based on the NIPALS algorithm|[20, 21].

Similar to PCA, it is possible to only use the first f PLS-components (basis vectors
in transformed space) for further analysis. This can be very useful, as in high
dimensional data spaces the higher PLS components often contain only noise and
most of the information is contained in the first f PLS-components (corresponding
to large eigenvalues of cov(T, U).
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24 1.4 Examples of Classification Algorithms

Algorithm 2: Partial Least Squares Discriminant Analysis

Training Phase:
1. Compute the loadings (V and W) and scores (T and
U) with SIMPLS or NIPALS - algorithm.
2. Optimize the number of included PLS-components via
cross-validation (CV)
a) Choose the first f PLS-components to compute
a linear regression model of the scores.
b) Estimate the decision boundary by maximizing
the Area under the Curve (AUC).
¢) Estimate the performance of the model on vali-
dation data.
d) Repeat steps (a)-(c) for increasing f and choose
the model with the best performance on the val-
idation data.

Classification Phase:
1. Compute the scores of the test data with the previ-
ously computed transformation matrices V and W
2. Apply the regression model using the first k PLS-
components on the scores.
3. Assign class labels according to the decision boundary

Prerequisites: The covariance matrices have to be computed with standardized
data and responses. It is essential that each descriptor is standardized (u = 0
and 02 = 1) to assure equal weight of each descriptor, independent of its average
magnitude. Furthermore, if the classes are not balanced (equal number of train-
ing data) a weight is assigned to the scores for computing the decision boundary.
Otherwise the decision boundary would be automatically shifted towards the larger
class. This is especially crucial when a multi-class task is solved by OvA, in which
case the classes are often very imbalanced.

Advantages and Disadvantages: An advantage of PLS-DA is that it does not
require dimension reduction or feature selection as this happens automatically by
computing and choosing the first f PLS-components for the model.

However, it has to be pointed out that PLS-DA is based on linear discriminant
analysis and thus finds a linear decision boundary. Non-linearly separable datasets
cannot be separated by PLS-DA. Furthermore, it is widely distributed in standard
chemometric software packages and is thus often used by users without further
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Figure 1.8: Decision tree. For simplified illustration, in this figure each splitting decision
considers only one variable. However, normally m > 1 variables are used for each splitting
decision

knowledge of supervised learning. As PLS-DA is not straightforward to understand
this has resulted in misinterpreted models in several publications.

1.4.3 Random Forest (RF)

A Random Forest (RF) is an ensemble classifier based on binary decision trees.
Decision trees belong to the most trivial classifiers and consist of a sequence of
binary decisions, each carried out considering a subset of descriptors. At each
node, the data is split into two subsets, according to a criterion which is found to
separate the samples in a best possible way. With every decision the tree grows
deeper and the purity of the nodes increases. The growing process is finished when
all the samples in a node belong to the same class. This terminal node is also called

leaf. |9, 22]

Decision trees exhibit low bias (if they are grown sufficiently deep), because with
each node the model can be adapted better to the training data. However, they
also exhibit high variance and are therefore prone to noise.

The idea behind RF is to build a large number Np of de-correlated trees (ensemble),
each of them exhibiting low bias but high variance. By averaging their results the
variance is reduced while the bias stays the same. This procedure is called bootstrap

aggregation or bagging.

Each of the Np trees is grown with a bootstrap sample of size Ny;.qin, which is drawn
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26 1.4 Examples of Classification Algorithms

from the training set®.

The variance of each tree is assumed to be 02 and the positive pairwise correlation®
is po?. The variance of the mean of Ny trees with variance o? is

X o (1.10)
1

= W (NT . O'2 + NT . (NT — 1)p0‘2)
T

L—p
_ 2 TP 2
=0°p+ NTU

It can be seen in Eq. (1.10) that the variance decreases with increasing Np. Fur-
thermore, it has to be emphasized that if p is not negligible small (much smaller
than 1) the first term in Eq. (1.10) limits the effect of averaging the predictions of
the tree ensemble. Therefore it is crucial that the positive pairwise correlation p
of the decision trees is as low as possible. This is ensured by considering a subset
m < d of descriptors (rather than all d descriptors) for the splitting condition on
each node. Thus, different splitting conditions are found for each node, resulting
in differing trees and minimized pairwise correlation.

4 A bootstrap sample is a sample, which is drawn with replacement. In this case, this means
that each tree is grown with Ny.4i, samples, but within this training set some samples can
occur multiple times while others are not represented at all. This ensures that all decision

trees are trained with different training data.
5

cov(A,B)
750%

If 0% = 0% = 02 and corr(A,B) = p then cov(A,B) = po?

corr(A,B) =
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Figure 1.9: Simplified illustration of a Random Forest (RF) classifier consisting of N trees.

Algorithm 3: Random Forest |9, 22]

Training Phase: Growing and storing Np decorrelated,
binary decision trees. For each tree
1. a bootstrap sample X* of size Ny.qin 18 drawn of the
training data,
2. with which a decision tree is grown. The splitting
criteria for each node is found by
a) randomly selecting a subset m < d variables of
the descriptors,
b) estimating the best splitting decision for splitting
the data resulting in two new daughter nodes.
The growing process is continued until all terminal
nodes reach a specified level of purity.

Classification Phase:
1. The test samples are classified by each of the Np trees.
2. The final class is assigned by majority voting.
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Model parameters: The main model parameter which has to be optimized is the
number of trees Np. If N is too small, the variance is still high and the model is
prone to noise. Considering only the performance metrics Ny cannot be too large.
However, the computation time during training increases with increasing Np and
beyond a certain N the performance improves only marginally with increasing Nyp.
Therefore also for RF it is useful to conduct parameter optimization.

However, RF' do not require CV as the parameters are normally optimized by the
so-called out of bag error (OOB), a procedure which is similar to CV. It is based
on selecting a bootstrap sample of size N; < Ny.qp for growing the i-th tree. The
remaining samples are classified by the i-th tree and the error is computed. After
growing all trees the mean error is estimated.

Another parameter is the size m < d of the random variable subset used for the
splitting decision at each node. The model is not particularly sensible to a change
of m. In most applications the default value of m = v/d is used. However, it is
important to remember that if the information is condensed in a small subset < d,
m should be close to d to ensure including the relevant subspace in the randomly
selected variables, as those variables are important for the splitting decision. If
the relevant information is distributed over all variables m can be chosen very
small.

Prerequisites: RF do not require any crucial pre-processing. The algorithm nei-
ther depends on distance measures (as kNN) nor on any regression model between
variables and transformed variables, respectively (as PLS-DA). The splitting con-
ditions for the nodes are simply based on comparison of the value of each included
variable to a certain threshold. This makes scaling irrelevant as the threshold would
be scaled to the same extent.

Advantages and Disadvantages: RF have evolved to one of the state of the
art classifiers and are nowadays applied in various fields. One major advantage is
that RF is rather robust concerning the parameter settings, which makes it suitable
for users lacking deeper knowledge. Furthermore it inherently performs multi-class
tasks and proofed to be robust in high dimensions. A disadvantage is that in
comparison to many other classifiers, such as the algorithms based on discriminant
analysis, the computation time during training can be very large. This especially
applies to RF using a large number of trees.
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1.5 The Curse of Dimensionality

Mathematical models in high dimensional data spaces can become problematic and
loose their validity due to the curse of dimensioninaliy. This term was introduced
by Bellmann (1961, [5]) and describes various phenomena that arise because of
sparse data distributions in high dimensions. The volume of the data space (i.e. d
dimensional unit hypercube) increases extremely fast with the dimension d. This
can be briefly demonstrated by a small example. Let’s assume a d-dimensional unit
hypercube with uniformly distributed data. The question is, how long the edge a of
a smaller cube, which contains the fraction » = 0.1 of the total amount of samples,
has to be:

Generally, the edge length is @ = v/0.1. In two dimensions, a = 0.32. For d = 3 one
obtains a = 0.46 and already a = 0.79 for d = 4. One can see, that with increasing
dimension, the data points are found at a large distance from the origin but close to
the edge of the hypercube. For d = 100 the edge length is with a = 0.98 close to one.
That means, that each data point is closer to the edge of a reference volume than
to any other data point. In other words, if 100 samples are distrusted uniformally
in a unit square (d=2), 10 samples are needed to achieve the same density in a
d-dimensional data space. That many samples are generally not available[15].

Several phenomena are based on this sparsity of a high dimensional space, e.g. dis-
tance measures loose their validity and the data of multivariate normal distributions
are found to be located on a shell of » = v/d rather than around the mean.
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Chapter 2

Methods for Artificial Dataset
Generation and Classification

Most papers about Spectral Histopathology (SHP) focus on sample preparation, data
acquisition and data pre-processing. Undoubtedly those are crucial aspects and
essential to allow subsequent classification of the tissue. However, considerations on
suitable classification procedures are often kept in the background. This approach
is not only limited to SHP but widely distributed in analytics.

Therefore, one aim of this thesis is to theoretically examine how spectroscopic data
are distributed in the d-dimensional data space and the effect of this distribution
on classification problems. For that purpose artificial datasets with different char-
acteristics are generated. The generated data sets differ in

® noise,

e dimension,

e size of training dataset and

e separability (linearly or non-linearly).

Subsequently, different classification algorithms (KNN, PLS-DA and RF) are ap-
plied to those datasets and their performance is evaluated. Although the main
focus of this thesis lies on vibrational spectroscopy, the used concepts should also
be applicable to other spectroscopic methods and are therefore kept as general as
possible.

In Sec. 2.1 the concept and the computation of the artificial datasets are explained.
In Sec. 2.2 the parameter settings of the examined classifiers are listed and justified.
The results of the experiments are listed and discussed in Ch. 3.
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32 2.1 Generation of Artificial Datasets

2.1 Generation of Artificial Datasets

2.1.1 General Assumptions

On the one hand, the generated datasets should represent spectroscopic data and
be comparable for different conditions (noise, dimensions, etc.). On the other hand,
they should be kept simple enough to enable understanding as well as generalization
for different applications. To meet these requirements, the following assumptions
and restrictions are made:

Decorrelated data: The effect of correlated features on the performance of each
of the considered classifiers was mentioned in Ch. 1. Furthermore it has to be em-
phasized that highly correlated features often lead to incorrect model interpretation
and misleading feature importance ranking [23].

As for kNN decorrelated features are necessary the features of the artificial datasets
are assumed to be uncorrelated.

Absorption spectroscopy results in highly correlated data, as adjacent wavenumbers
have similar intensities®. However, the features can always be decorrelated prior to
classification tasks (e.g. Principal Component Analysis, Orthogonal Nonnegative
Matrix Factorization (ONMF), Discrete Wavelet Transform (DWT), Generalized
Principal Component Analysis (GPCA)) |24]. Furthermore, if specific descriptors
are selected rather than e.g. intensity values for equally spaced wavenumbers,
feature correlation can also be decreased.

Beer-Lambert law: The measurements are assumed to obey the Beer-Lambert
law, which describes the linear relationship between the absorbance A(7) and the
analyte density n, [em ™3] (and concentration ¢, [cm ™3], respectively):

Ap)=0(P) - n-§ (2.1)
o(v), [em?] is the frequency dependent absorption cross section and &, [em] the
path length (see also Sec. 4.2.1) [25].

Under certain circumstances the linear relationship between absorbance and con-
centration (or density) looses its validity and becomes non-linear. Factors which
limit the linearity are [26]

e scattering effects,

6 Data of mass spectrometry are correlated in a different way which is not considered here
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e flourescence, phosphorescence

e for solutions: high concentrations of the analyte (due to inter-molecular inter-
actions of the solvent resulting in different charge distributions and potential
change of the refractive index)

e for solid samples: high sample thickness

e instrumental deviations (polychromatic radiation, non-linearity of the detec-
tor etc.)

Binary classification task with balanced classes: It is assumed that the
classification task is binary (two classes). As discussed in Sec. 1.1 a multi-class
problem can be solved by a system of binary classifiers.

Furthermore both classes are assumed to have the same number of training samples.
In case this condition cannot be met, various resampling techniques can be applied
to ensure balanced classes.

Gaussian noise: All models are based on Gaussian noise, which means that the
samples of each class are distributed normally with the class specific mean vector
le, ¢ = 0,1 and the covariance matrix 3, which is assumed to be the same for both
classes.

X~ Nd(:uv 2)
fhe €R? (2.2)

dxd
Ei,j = COU(Xi,Xj), Y eR

As already mentioned, the features are assumed to be uncorrelated and the variance
is assumed to be equal for all features. Thus, ¥ = o2 - I is diagonal as ¥, ; = 0 for
i #jand ¥;; = 0%

2.1.2 Artificial Data Models

Two different approaches are used for the generation of the artificial datasets. Both
are based on the idea of creating linearly (LS) and non-linearly (NLS) separable
data in different dimensions, with different noise levels and different sizes of the
training dataset.

Model 1 (Ball Model) is intuitive and widely used in theoretical examinations of
classification algorithms. For the LS dataset the model consists basically of two
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Figure 2.1: Scatter plots of artificial datasets for noise level n = 0.05. Row 1 illustrates
Model 1 (d = 2, LS) a) raw data; b) standardized data. Row 1 illustrates Model 2 (d = 3,
LS) a) raw data; b) normalized to internal standard x3; ¢) standardized.

d-dimensional multivariate normal distributions with different mean vectors. The
NLS dataset consists of a d-dimensional multivariate normal distributions for class
1 surrounded by a noisy (d-1)-sphere. Model 1 does not represent raw hyperspectral
data, but it is suitable for understanding concepts in high dimensional spaces and
is comparable to hyperspectral data after normalization. It is further explained in
Sec. 2.1.

Model 2 (ray Model) is created to represent hyperspectral data considering the re-
strictions mentioned in Sec. 2.1. The idea is, that each substance in the measured
compound consists of a specific combination of the features. However, different
concentrations of the substances result in different absorbance values. Before nor-
malization of the spectra, this can be represented by rays in the d-dimensional space.
All rays intersect in the origin and the position of a data point along its class ray
represents the concentration. Model 2 is further explained in Sec. 2.1.

In most applications the information about a concentration or sample thickness
is equalized by the normalization during pre-processing. The most prominent ap-
proaches for normalization are vector normalization (sum of feature squares equals
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Figure 2.2: Scatter plots of artificial datasets for noise level n = 0.3. Row 1 illustrates Model
1 (d = 2, LS) a) raw data; b) standardized data. Row 1 illustrates Model 2 (d = 3, LS) a)
raw data; b) normalized to internal standard x3; c) standardized.

1) or normalization to an internal standard’. Therefore, the Model 2 datasets are
normalized before classification. Here, normalization to an internal standard is cho-
sen due to better comparability to Model 1. However, similar results are expected
for vector normalization.

Model 1 data do not contain any information about concentration and thus do not
have to be normalized. As by normalization to an internal standard the data space
is reduced by one dimension, the d-dimensional Model 1 can be compared to the
(d+1)-dimensional Model 2.

As mentioned in Ch. 1, kNN and PLS-DA require standardization during pre-
processing while for RF standardization does not make any difference. Thus, both
models are standardized before classification. In Fig. 2.1 the data distributions for
the 2D Model 1 and the 3D Model 2 are illustrated before and after standardization
for noise level n = 0.05 and in Fig. 2.2 for n = 0.3

All data are created using MATLAB 2015b (The MathWorks, Inc., Natick, Mas-
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36 2.1 Generation of Artificial Datasets

Symbol Description Values
d dimension 1 to 30
Nye number of training samples per class 100,200,300,...,4900,5000
n noise level 0.05, 0.1, 0.2, 0.3
separability LS (linearly), NLS (non-linearly)

Table 2.1: Parameters for generation of Model 1 data

sachusetts, United States).
Model 1: Ball Model

In the following the method to generate Model 1 datasets is outlined briefly. Tbl. 2.1
lists the parameters, which are varied in order to obtain different datasets.

In the linearly separable case (LS) the model basically consists of two classes
with class means p. (¢ = 0 or 1), which are located at opposite directions of the
data space.

Ho = (1,1,17...,1>/\/E, Ho ERd

p= (=1, =1, —1)/Vd, R (2:3)

According to the Gaussian noise model, the data of each class are distributed nor-
mally in d dimensions with the class mean p. and 3. The covariance matrix X
is the same for both classes. ¢ depends on the noise level parameter n and the
Euclidean distance between the class means a = ||puo — p1]-

oc=n-a (2.4)

In the non-linearly separable case (LS) class 0 data are distributed normally
around the origin.

to = (0,0,...,0),  po eR? (2.5)

Class 1 data are distributed normally with mean vectors j1; on a d-sphere with
radius a. For each of the j = 1 to N, class 1 samples, a mean vector fi ; is chosen

7 An interal standard is a specific feature, which is assumed to have the same intensity for
each substance of the compound, such as the amide 1 band in most biological samples in IR
spectroscopy based images
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Figure 2.3: Illustration of the reference length a for setting the standard deviation o according
the specified noise level 7. (Here: 7 = 0.05 a) Model 1: linearly separable; b) Model 1: non-
linearly separable; ¢) Model 3, before rotation to first hyperoctant: valid for linearly and
non-linearly separable case

randomly from a uniform distribution on the sphere. The sample coordinates are
then assigned by a normal distribution with the previously selected p4 ; and 3.

Model 2: Ray Model

In the following the algorithm to generate Model 2 datasets is outlined briefly.
Basically the model consists of one class 0 ray, which is oriented along the diagonal
%o = (1,1,...,1)/+/d of the d-dimensional hyperoctant. This ray represents the
substance which should be detected. The model assumes that class 1 consists of
Nygyn > 1 substances, which are all represented by a specific direction in the d-
dimensional data space (ray) with the corresponding unit vector X1 ;, 7 € [1, Nygy1],
Xc1,i 7 Xo. Class 1 rays are all chosen to form the angle ¢ with the class 0 ray.

COS @ = )A(cl,i : XAOT (26)

In addition to this condition, the N,q,; class 1 rays are subject to certain constraints
which ensure the respective separability (linearly or non-linearly) and a ray distri-
bution which is as even as possible. Those constraints are outlined in more detail
below.

The algorithm first creates the noisy data for all rays orientated parallel to x;,; =
(0,0, ...,0,1), Xjni e R? by a multivariate normal distribution in d dimensions. Sub-
sequently each class 1 ray is rotated in a previously chosen rotation plane by the
defined angle ¢ (Fig. 2.4) Finally, all data (class 0 and class 1) are rotated to the
first hyperoctant. The steps are summarized in Alg. 4 and discussed further be-
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Figure 2.4: lllustration of the rotation of the class 1 cones by the angle ¢ in 3D.

orthogonal complement

low. Tbl. 2.2 lists the parameters, which are varied in order to obtain different
datasets.

Algorithm 4: Overview on generation of model 2 data

for each dimension do
- compute the rotation matrix M,; to rotate all data to

first hyperoctant;
- compute the rotation matrices M;, i € [1, Nyq,1] to rotate
class 1 rays;

for each Nyc and noise level 1 do
- create multivariate normally distributed data with

w=(0,0,...,0,1) for uniformly distributed [;

- rotate all class 1 cones to a boundary ray of the main
cone (defined by the fixed aperture angle
@, cos(p) = (Xo,Xc1,4)) using the computed rotation
matrices M;;

- rotate all (class 1 and class 0) data points to the first
hyperoctant using computed rotation matrix M,;

end
end

Generating data with different intensities and Gaussian noise: This model
aims to simulate compounds with different concentrations and Gaussian noise. The
concentration is considered by varying the length [ of the mean vector p for the
normal distribution. For each data point [ is selected randomly from a uniform
distribution U(0, lnez). As the data distribution takes place before the rays are
rotated, the initial mean vector for the j-th data point of the c-th class is:
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Symbol Description Values
d dimension 2to 15
Nye number of training samples per class 10,50,100,200,300,...,1900,2000
n noise level 0.05, 0.1, 0.2, 0.3
separability LS (linearly) a and b, NLS (non-linearly)
[Nyayn  number of class 1 rays 20]
[0 opening angle of class 1 rays hull /18]

Table 2.2: Parameters for generation of Model 2 data. The parameters in brackets are kept
constant in this model, could be modified though.

tej = (0,0,0,...,1)I
[ ~U(0,lna)
ce0,1

J €[l, Nyc]

(2.7)

The coordinates for each data point are then computed by a multivariate normal
distribution with the corresponding jic; and ;. Similar to Model 1, the standard
deviation for the Gaussian distribution is related to the inter-class distance and the
specified noise level 7. In contrast to the ball model, the inter-class distance a of
the the ray model depends on the signal intensity, which is here represented by the
length of the mean vector [.

Furthermore the inter-class distance depends on the chosen angle ¢ between the
class 0 and class 1 rays. The relationship between the standard deviation of the
noise and vector length [ is assumed to be linear and modeled by Eq. (2.8)

a=1/2- sin 2
2 (2.8)

oc=a-m

The proportionality between the standard deviation and the feature vector length
is based on the assumption that the noise intensity is proportional to the signal
intensity. This assumption would result in different o; for each dimension (spectral
descriptor), depending on its intensity. However, for simplification the standard
deviation o of the noise is assumed to be equal for all dimensions in this model.
Instead it is chosen to be proportional to the feature vector length.

It is worth noting that noise originates from various sources and that the assumption
of proportionality between signal and noise intensity is often violated.
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40 2.1 Generation of Artificial Datasets

Rotation matrices to obtain tilted class 1 rays: The matrices M;, i€[1, Nygy1]
for rotating the N, class 1 rays from %X;,,; = (0,0, ...,0,1)7, %X;,,; e R? to the desired
Xc1,i are computed individually for all different dimensional datasets. However, for
each dimensionality of the feature space the same set of rotation matrices is used
for different noise levels n and training set sizes Nyc.

First the rotation plane is defined by randomly choosing Vi, piane,; from a uniform
distribution in the orthogonal complement to X;,; = Xo. The orthogonal comple-
ment to the plane spanned by X;,; and Vi, piane; is the subspace about which the
j-th class 1 ray is rotated by 6. Any basis of this (d-2)-dimensional orthogonal
complement is taken as a simplex to compute the rotation matrix M; using the
algorithm of Aguilera - Perez [27] (see 6.3).

Supplementary conditions have to be satisfied regarding the rotation of the class
1 rays to ensure linearly (LS) and non-linearly (NLS) separable classes, respec-
tively.

Constraints for linearly separable data: Before randomly choosing V1, piane,i
and thus defining the rotation planes a reference vector v, is chosen randomly
in the d-1 dimensional orthogonal complement of X;,; = Xg. Subsequently,
Vinplane 18 rejected if (Vinpiane, Vrer) < 0.7 for the LS-a ray model (linearly
separable A).

The LS-b ray model defines the reference vector V,.¢ as Vi,piane for all class 1
rays. Thus, all class 1 rays are rotated in the same manner, resulting in one
class 0 and one class 1 ray. After normalization to an internal standard, this
case corresponds to the linearly separable ball model.

Constraints for non linearly separable data: For each randomly chosen
VinPlane; (and therefore defined rotation plane) rotations are conducted by
both, ¢ and —p. If the number of class 1 rays is lower than the number of
hyperoctants (2¢), each hyperoctant can only be occupied once.

Rotation matrix to rotate all data to the first hyperoctant: After tilting
the class 1 rays all data are rotated to the first hyperoctant, so that the class 0
ray (Xo) becomes orientated along the direction x5 = (1,1,...,1)/v/d e R The
corresponding rotation matrix M,y describes a rotation in the plane spanned by
Xini = (0,0,...,0,1) and %o = (1,1,...,1)/+/d and is computed by the Aguilera -
Perez algorithm|27] (see 6.3). The required simplex is again spanned by the basis
vectors of the (d-2)-dimensional orthogonal complement of the rotation plane
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Figure 2.5: Visualization of data generation and pre-processing for linearly separable data of
model 2 (ray model, LS-b). a)-c) data generation steps and d)-e) pre-processing steps for for
d = 2; f)-h) data generation steps and i)-j) pre-processing steps for d = 3 (3 dimensional
view); k)-m) data generation and n)-o) pre-processing steps for d = 3 (2 dimensional view;
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Figure 2.6: Visualization of data generation and pre-processing for non-linearly separable data
of model 2 (ray model, NLS). a)-c) data generation steps and d)-e) pre-processing steps for
for d = 2; f)-h) data generation steps and i)-j) pre-processing steps for d = 3 (3 dimensional
view); k)-m) data generation and n)-o) pre-processing steps for d = 3 (2 dimensional view;
X1 — X2 pIane)
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2.2 Classifier Settings

Classifier training and testing is carried out using MATLAB 2015b (The Math-
Works, Inc., Natick, Massachusetts, United States). All classifiers are tested on a
test set with 5000 samples per class. Test data exhibit the same noise level and
dimension as the respective training set. Test data for the ray model are generated
using the same rotation matrices as are used for training data generation.

The performance of a classifier is estimated in terms of accuracy, sensitivity and
specificity. Here, the accuracy is equal to the mean of sensitivity and specificity, as
only balanced classes are featured. Furthermore the required training and testing
times are recorded. The results are visualized using the MATLAB script Hatch-

fill[28).

Classification parameters are estimated using 10-fold cross validation based on the
accuracy as performance measure. The one standard error rule is applied to es-
timate the optimum model parameters. CV is stopped automatically when the
accuracy does not change more than ¢ = 0.05 for five consecutive parameter varia-
tions.

kNN: The MATLAB function fitknn with the Euclidean distance metric is used
to build the kNN model. The number of nearest neighbors £ is estimated by CV
in the interval £ = 3 to 21.

PLS-DA: The PLS components are computed using a script of Yi Cao (2009)[29],
featuring the NIPALS algorithm. The number of PLS components used for the dis-
criminant analysis is estimated by CV. The threshold for the discriminant analysis
is found by maximizing the AUC.

RF: The MATLAB function treebagger is used to implement the Random Forest.
Nrpain samples are selected randomly with replacement (bagging) for each tree.
The number of randomly chosen descriptors for each split is v/d, with d being
the number of features (dimension). Considering the number of trees, preliminary
experiments are conducted on similar datasets which all result in a selection of 30-50
trees. Cross validation curves show, that choosing more than the selected number
of trees increases the computation time but does not change the performance (in
contrast to other classifiers). Based on this knowledge, all RF are created with 75
trees in order to save capacities.
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Chapter 3

Results and Discussion of Classifying
Artificial Spectroscopic Datasets

3.1 Cross Validation

As already mentioned in Sec. 2.2, the classification parameters are selected using
10-fold CV applying the 1-standard error rule. For kNN and PLS-DA the CV is
conducted for all different models during the training. A preliminary study showed,
that in case of the RF the performance does not decrease if selecting a higher Ny,
than necessary. Thus, to save computation time N;... = 75 was chosen for all
cases. This behavior of a RF is illustrated in Fig. 3.1, which shows the CV curve
for a linearly separable dataset of the ball model, with d = 15, Ny = 1000 and
n = 0.05.

3.2 Classifier Performance

For each separation characteristic (LS or NLS), model type (ball or ray) and noise
level n (e.g. linearly separable ball model, n = 0.2) the accuracy, sensitivity and
specificity are illustrated as heat maps with varying dimension d (x-axis) and num-
ber of training data per class N,o (y-axis).

Those heatmaps allow the interpretation of the performance trend with increasing d
and Nyc. It is evident that classifier performance is mainly limited by the structure
of the data in the dataspace, but also dependencies on the selected classifier can be
explained.

The heatmaps are color coded in the range of 0.5 to 1.0 with increments of 0.05.
The relative pixel area A~ covered by each threshold level is estimated and listed
for better comparison between the individual cases.
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Figure 3.1: Cross validation of an RF classifier for the linearly separable ball model, d = 15 and
Npc = 1000. Accuracy, sensitivity and specificity are illustrated. The shaded areas represent
one standard error. Here, Ny = 25 is selected using the 1-standard error rule.

3.2.1 Ball Model

Linearly separable ball model (Fig. 3.2): The accuracy of the linearly sep-
arable data set is high (ACC > 0.99 for n = 0.05,0.1,0.2 and ACC > 0.94 for
n = 0.3) for all classifiers and cases. The decrease in accuracy for higher noise
level can be explained, as the data cluster of the two classes overlap for noisy data
Fig. 2.2.

In Fig. 3.2j to Fig. 3.2l (linearly separable ball model, n = 0.3) stripes of slightly
different accuracy are present at certain dimensions. This is only an artifact due to
machine accuracy and the chosen threshold for color mapping, as for all classifiers
ACC ~ 0.95 (different color coding for ACC > 0.95 and ACC < 0.95).

Non-linearly separable ball model (Fig. 3.3): The curse of dimensionality be-
comes apparent when interpreting the obtained accuracies for the NLS ball model.
As a reminder, class 0 of the model is created by a multivariate normal distribu-
tion with g = (0,...,0) and a covariance matrix ¥ according to the corresponding
noise level. The mean vectors of class 1 are placed on a sphere around the class
0 cluster. The class 1 data points are then created according to a multivariate
normal distribution with those mean vectors and 3. As mentioned in Sec. 1.5,
normally distributed data points in high dimensions are not accumulated close to
the mean vector anymore (as in low dimensions), but rather distributed in a shell
with r = v/d around the mean. Thus, class 0 and class 1 overlap highly in high
dimensions and are not distinguishable by a classifier anymore.

Nevertheless, performance differences between the classifiers are apparent. The
accuracy obtained for the PLS-DA classification of the non-linear data set is ACC' =
0.66 for d = 1 and decreases with higher dimensions, approaching ACC = 0.5.
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The reason is obvious, PLS-DA attempts to find a linear decision boundary for
a non-linear problem, which is not possible at all. However, the classifier "tries
it’s best" by defining a decision boundary that correctly assigns all of class 0 as
positive (TP), while assigning as few class 1 data points as possible to class 0
(FP). However, it becomes apparent that PLS-DA is not suitable for non-linear
classification problems.

Although the accuracy obtained by the RF classification also decreases with higher
dimensions, the results illustrate that RF is more suitable for such problems than
ENN. For kNN ACC — 0.5 already at d = 5 for a low number N,c and at d =
10 — 12 for higher Npc. This can be explained, as the data space becomes sparse
for high dimensions and distance measures loose their validity (Sec. 1.5). The RF
is not based on a distance measure. Furthermore it selects a random subset of
descriptors and creates thus a reduced dataspace for each split.

3.2.2 Ray Model

Non-linearly separable ray model (Fig. 3.4): This model shows similar charac-
teristics to the NLS ball model and the results can be reasoned similarly. However,
the classifier performance on the NLS ray model is slightly higher than on the NLS
ball model (for d = 7, n = 0.3 and N, = 1500 approx. ACC/(ball model) = 0.8
and ACC(raymodel) = 0.85), This can be explained, by the chosen dependence of
the standard deviation of the noise from the interclass distance. In the ray model,
this interclass distance is taken before the rays are rotated to the diagonal of the
first hyperoctant. When subsequent normalization to the X -axis is performed, for
certain class 1 ray orientations the resulting class distances in the projected space
become larger than before the projection.

Linearly separable ray model A (Fig. 3.6): Although this model is linearly
separable, it shows similar characteristics to the NLS sets of the ball and ray model.
The main characteristics of the NLS model are not due to the type of separability
but rather in the curse of dimensionality and its effect on the multivariate normal
distribution. In the LS-A ray model, all class 1 rays are rotated to one part of
the orthogonal subspace of the class 0 ray (restriction that (Vi,piane, Vrer) > 0.7).
Nevertheless, this results in a spherical distribution of class 1 data around class 0
data. Even though only a part of the sphere is occupied by class 1 mean vectors,
the result is similar to the NLS case as the curse of dimensionality has the same
effect.
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Linearly separable ball model B (Fig. 3.5): This model corresponds to the
LS ball model and leads to similar results. Differences in accuracy between the
dimensions for n = 0.3 arise from the random selection of the rotation matrix,
which can result in differently rotated class 1 rays. As a reminder, class 1 rays are
rotated with respect to the class 0 ray, when all rays are still orientated along the
initial vector x;,; = (0,0, ...,0,1). Subsequently all data points are rotated in such
a way, that the class 0 ray is orientated along the diagonal of the first hyperoctant
(1,1,...,1)/v/d. Normalization to the variable 24 = 1 can skew the class separation
in different ways, which results in better or worse class separation.

3.3 Sensitivity, Specificity and Accuracy

Sensitivity and specificity plots are not shown for all cases as the general behavior
can be illustrated in two examples (Fig. 3.7 and Fig. 3.8). It becomes apparent,
that the kNN classifier maintains a high sensitivity by accepting a low specificity (or
the other way round). That means, for higher dimensions kNN starts assigning all
samples to one class. On the contrary, the RF for the same problem results both
in reduced sensitivity and reduced specificity which show similar behavior with
dimension and Ny,.q;,. Furthermore, the above mentioned behavior of the PLS-DA
classification on NLS datasets becomes apparent.

3.4 Computation Time

In addition to the performance measures, the required computation time for train-
ing and testing is recorded. The numeric values are not listed in this thesis, as
they depend on the available processing power. However, a ratio of the required
computation time can be stated. This comparison is conducted using the same
CV settings for all classifiers (e.g. 10-fold cross validation for all classfiers). kNN
requires hardly any training time but a higher testing time. In contrast to that RF
requires a lower testing than training time. Hence, the sum of training and testing
time is used for comparison.

Obviously for all classifiers the computation time increases with increasing dimen-
sion and training data set. However, it turned out that the required computation
time differs by one order of magnitude between the classifiers. The time required
for ENN is approximately ten times the time needed for training and testing a
PLS-DA classifier. A RF needs approximately a hundred times the time PLS-DA
requires.
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Figure 3.2: Classification accuracy for the data sets of the linearly separable ball model. The
inset specificies the relative areas at different levels of accuracy.
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Figure 3.3: Classification accuracy for the data sets of the non-linearly separable ball model.
The inset specificies the relative areas at different levels of accuracy.
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Figure 3.4: Classification accuracy for the data sets of the non-linearly separable ray model.
The inset specificies the relative areas at different levels of accuracy.
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Figure 3.5: Classification accuracy for the data sets of the linearly separable ray model B.
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Figure 3.6: Classification accuracy for the data sets of the linearly separable ray model A.
The inset specificies the relative areas at different levels of accuracy.
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Figure 3.7: Comparison of RF, kNN and PLS-DA in terms of sensitivity, specificity and
accuracy taking the non-linearly separable ball model, n = 0.2 as an example. The inset
specificies the relative areas at different levels of sensitivity/ specificity/ accuracy.
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Figure 3.8: Comparison of RF, kNN and PLS-DA in terms of sensitivity, specificity and
accuracy taking the non-linearly separable ray model, 7 = 0.2 as an example. The inset
specificies the relative areas at different levels of sensitivity/ specificity/ accuracy.
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Chapter 4

Theoretical Background on Infrared
Hyperspectral Imaging and
Malignant Melanoma

4.1 Cutaneous Malignant Melanoma

Malignant melanoma (MM) is a malignancy from melanocytes, which are cells of
the epidermis. Although it only contributes to a small percentage of all skin cancer
cases, it accounts for most skin cancer deaths as it is the most aggressive one®.
Besides from the skin, malignant melanoma is rarely found in all other organs in
which melanocytes are located, e.g. eyes, mouth or intestines|30]. However, in this
thesis only malignant melanoma of the skin (cutaneous melanoma) is examined,
which is in the following referred to as malignant melanoma (MM).

In 2012 approximately 100000 Europeans were diagnosed with MM, accounting
for 3 % of all new cancer cases that year. Furthermore, MM was responsible for
approximately 22200 deaths in the same year, which made up 1% of all cancer
deaths in Europe. Worldwide, the countries with the highest recorded rates are
Australia and New Zealand|31].

To enable understanding and interpretation of the classification procedure and re-
sults in Ch. 5 and Ch. 6, the following section focuses on the histology of the
human skin as well as the changes brought by progression of malignant melanoma.
In addition the basics of etiology and diagnosis of MM are mentioned briefly.

8 The three major types of human skin cancer are malignant melanoma, basal cell carcinoma
and squamous cell carcinoma. Malignant melanoma is the most lethal and thus requires a lot
of attention.
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Figure 4.1: Model of the cutaneous covering for both, non-hairy and hairy skin [33]

4.1.1 Histology of the Human Skin

The human cutaneous covering is part of the integumentary system? and consist of
the skin (cutis) and the subcutaneous tissue (subcutis), which is located below the
skin. The skin is further divided into two layers, the epidermis and the dermis. The
epidermis is a multilayered keratinized squamous epithelium and is the outermost
layer of the cutaneous covering. The dermis, a dense irregular connective tissue
which mainly consists of collagen and elastin, is located between the epidermis and
the subcutis. The dermis is strongly connected to the subcutaneous tissue|32].

The epidermis is further divided into the horny layer (stratum corneum), granular
layer (stratum granulosum), spineous layer (stratum spinosum) and basal layer
(stratum basale). The thin basal membrane is located directly below the basal layer
and separates epidermis and dermis distinctly (dermal-epidermal junction).

The epidermis mainly consists of keratinozytes, which proliferate continuously in
the lowest parts of the epidermis, the basal and spineous layer. After the mitosis
one daughter cell migrates to the upper epidermal layers while the other one stays
in the lower layers and undergoes a further cell division. As they move outwards
progressive differentiation takes place, which results in the distinguishable layers of
the epidermis. This differentiation is reflected by increasing keratinization of the
cells until they are shedded as dead cells from the stratum corneum|34, 35].

9 The organ system that acts as a barrier to protect the body from damage, such as UV-radiation,
bacteria, viruses, chemicals and other pathogens, is called integumentary system. It consists
of the skin, subcutaneous tissue, assorted glands, nails and hair.
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Other cell populations, that occur within the epidermis are mainly melanocytes,
Langerhans’ cells and Merkel cells'®[32].

Melanocytes are rather large cells and are located in the stratum basale. They
synthesize melanin from tyrosin, the pigment which is responsible for skin and
hair color. Melanin production is carried out in melanosoms, organells which are
related with lysosomes. Subsequently melanin is stored in the melanosoms and
passed to neighboring keratinocytes, respectively. The compound of one melanocyte
and about 35 neighboring keratinoctes is labeled as epidermal melanin unit |36).
Melanin absorbs solar radiation and thus acts as a protecting filter. Enhanced sun
exposure provokes melanin production.

The dermis is responsible for the tear strength and the plasticity of the skin and
mainly contains connective tissue (CT). It is based on a matrix in which polysaccha-
rides and proteins (collagen and elastin) are linked to macromolecules. In contrast
to the epidermis, the dermis contains blood and lymphatic vessels. Hair follicles
and sebaceous glands (glandula sebacea) are located in the dermis.|32].

The subcutaneous tissue (subcutis), also called hypodermis, establishes the connec-
tion of the skin to the superficial fascia of the body and consists mainly of adipose
tissue, which is held together by connective tissue.

4.1.2 Etiology and Pathology of Malignant Melanoma

Abnormally increased proliferation of melanocytes can be malignant or benign.
Benign lesions are called melanocytic nevi', well known as moles, and are mostly
already present at birth. In many cases it is difficult for the dermatologist to
distinguish a malignant melanoma from a benign nevus. However, some nevi are
potential precursors to melanoma and have to be monitored[37]. Melanomas which
do not arise from pre-existing nevi are referred to as de nowvo.

Etiology: As epidermal cells are the outermost layer of the human body they are
strongly exposed to pathogens and thus prone to gene mutations. A high risk factor
is excessive UV-exposure due to ionization of cellular molecules and subsequent
damage of the DNA. There is a higher incidence in white people with blond or
red hair, freckles and poorly tanning skin. MM is rare in black, asian or orientalic

10 Langerhans’ cells belong to the specific immune-reaction system and are initially not differ-
entiated. After contact to an antigen differentiation takes place and the resulting dendrite
cell is further presented to T-lymphocytes in lymph nodes. Merkel cells are mechanoreceptors
(sensory cells) and are located in the basal cell and in hair follicles, especially in sensitive areas
of the skin[32].

11 A lesion with a local excess of one or more cell types of the skin is called nevus
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people and before puberty, respectively. Furthermore, 10 to 15 % of melanomas are
familial[38].

Diagnostics: The "ABCDE’ rule is applied to decide whether a lesion is poten-
tially harmful and has to be examined closer by a histopathologist. In such a case
a skin biopsy is taken for further examinations. This rule summarizes possible
signs for melanoma based on the appearance of the lesion. Suspicious features are
asymmetrical shape, border irregularity, color variability, diameter greater than
6 mm and evolution of the lesion. Further symptoms that are not covered by the
"ABCDE’ rule are e.g. itching or bleeding of the lesion|39].

Types: There are different forms of malignant melanoma|38, 39]:

e Superficial spreading melanomas are common on lower limbs of young/middle-

aged adults and related to intermittent high-intensity UV-radiation

e Nodular melanomas appear with no prior in situ phase and are related to
intermittent high-intensity UV-radiation,

¢ Lentigo maligna melanoma appears mostly on exposed skin of elderly and
is related to long-term cumulative UV exposure,

e Acral lentiginous melanomas occur on palms, soles and nail beds. There
is no indication to a relation with UV-exposure.

Pathophysiology and phases[30, 37] Various characteristics apply to all dif-
ferent types of MM. Firstly, all melanocytic lesions origin in the dermal-epidermal
junction. Due to cell mutation cancer cells can emerge from melanocytes and sub-
sequently proliferate. Nests of MM cells are created and expand horizontally at the
beginning. Later they grow downwards into the dermis and deeper layers.

Furthermore, MM cells tend to be larger than melanocytes and nevus cells'? with a
larger, pleomorphic'® nuclei. Also the cytoplasm is amophilic, meaning that it can
be stained by both, acidic and basic dies. Melanin pigment can, but does not have
to be present in the cancer cells. If melanin is present the lesion is called melanotic,
if it is absent amelanotic melanoma. Due to the immune response, inflammatory
infiltrate is normally present in the tumor.

For the therapy regime and prognosis it is important to assess the progress and the
metastatic potential of the tumor. The radial growth phase (RGP) and the vertical

12 Nevus cells are a type of melanocyte, which are larger in size. Nevus cells are the main
constituent of melanocytic nevi.

13 yarying in size, shape and staining properties
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growth phase (VGP) is an attempt to distinguish between a precancer of MM and
MM with metastatic potential.

MM in the RGP are restricted to the dermal-epidermal junction and are also called
melanoma in situ. The thickness is smaller than 1 mm. As no blood or lymphatic
vessels pass the dermal epidermal junction, no metastases can emerge in this phase.
The melanoma can be removed completely by surgery. Thus the RGP is considered
a precancer.

In the VGP the cancer starts invading the dermis and continuously grows into
deeper layers, in all of which there are blood and lymphatic vessels. Cancer cells can
enter the bloodstream or the lymphatic system and secondary tumors (metastasis)
can be formed in another organ. The risk for metastasis becomes higher with deeper
penetration.

To sum up, the depth of the cancer is an important factor for the disease man-
agement. Two metrics have been developed to measure the depth. The Breslow
thickness measures the distance from the granular layer to the deepest reaches of
the tumor. In case of an ulcerated lesions, the base of the ulcer is taken as the top
boundary.

Another widely used scheme are the Clark’s levels, which categorize the MM based
on the deepest layer which is invaded by the cancer cells.

e Level I: Cancer cells are restricted to the the epidermis (all cancer cells are
located above the basal membrane). This corresponds to the RGP (melanoma
in situ).

e Level II: The melanoma starts growing into the papillary dermis (upper part
of the dermis)

e Level III: The tumor cells reach the border between papillary and reticular
dermis.

e Level TV: The reticular dermis is invaded by tumor cells

e Level V: The subcutaneous fat is invaded by tumor cells.

Staging: The severity of the cancer is described by staging systems. Mostly
the TNM-system (Europe) or the AJCC-system (American Joint Committee on
Cancer, USA) is used. A major factor for the staging is the tumor thickness.
An explanation of staging systems is required to understand the histopathological
diagnosis of the used samples and is provided in Appendix 6.3.
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Figure 4.2: Visualisation of Clark's levels and Breslow thickness, in analogy to [38]

4.2 Fourier Transform Infrared (FT-IR) Imaging

Infrared spectroscopy is a commonly used analytic technique for non-destructive
chemical analysis of various samples. Information about the structural properties
of a sample can be derived based on its absorption of infrared radiation.

4.2.1 Theory of Infrared Spectroscopy

Infrared radiation is electromagnetic radiation with wavelengths between A = 0.77 pm
and A\ = 1000 pm, which corresponds according to Eq. (4.1) to photon energies be-
tween £ = 1.24meV and F = 1.61eV.

(4.1)

v is the frequency of the IR radiation, 7 the corresponding wavenumber, h is
Planck’s constant (h = 6.626 07004 x 107**m?kgs™!) and ¢ the speed of light
(c = 299792458 ms™!). Eq. (4.1) shows that wavenumber, wavelength, frequency
and photon energy all depend on each other. As a rule, in IR spectroscopy the
wavenumber 7 with the unit [7] = cm™ is used to refer to the photon energy.

IR radiation is divided into three ranges depending on the wavenumber, near-
IR, mid-IR and far-IR (Thl. 4.3). In biological applications one is interested and
conducts measurements in the mid-IR region.

The mid-IR region covers the energy range of molecular vibrational states in bio-
logical molecules. Hence, infrared radiation is able to excite molecular vibrations
either by absorption or by inelastic scattering. IR spectroscopy exploits the effect
of absorption.
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Table 4.1: Infrared regions and there wavelength/wavenumber intervals. [40]

Nomenclature Wavenumber Wavelength
far-IR v €[10,400] cm™! A € [1000, 25] pm
mid-TR v € [400, 4000] cm™* A€ [25,2.5] pm
near-IR € [4000,13000] em™' X €[2.5,0.77] pm

The molecular vibrational states are quantum states with molecule specific energy
levels E;. By absorbing a photon with the exact energy of the specific quantum
transition

the molecule can be excited to a higher energy level F;. Based on the energy
of the absorbed photon, conclusions about the absorbing molecule and the spe-
cific vibrational states can be drawn (functional groups, inter- and intramolecular
interactions).

Molecular vibration is characterized by a periodic motion of the atoms in the
molecule independent of the translational and rotational motion of the whole molecule.
The vibrational motion can be approximated by the model of a quantum harmonic
oscillator. The eigenfrequencies and therewith the energy levels of the harmonic
oscillator depend on the atomic masses and the bond strengths|[41].

This model implies that each vibrational motion can be decomposed into indepen-
dent normal modes'*. The number of normal modes depends on the number N of
atoms in the molecule. A molecule with N atoms has 3N — 6 normal modes. To
describe the position of each atom in the molecule, 3 coordinates are required. The
whole molecule has 3N degrees of freedom as it takes 3/V coordinates to describe
its spatial configuration. However, 3 of those degrees of freedom correspond to the
translational and rotational information of the whole molecule, respectively, and
have to be subtracted. For a non-linear molecule the resulting number of degrees
of freedom (number of normal modes) is

3N — 6 (4.3)

A linear molecule is invariant to rotation about the axis in the molecule. Thus, the
number of normal modes in a linear molecule is

14 orthogonal, eigenstates of the harmonic osciallator; corresponds to standing waves
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Figure 4.3: Different modes of molecular vibrations
3N -5 (4.4)

Based on their characteristic the normal modes are organized into stretching (change
in bond length) or bending (change in bond angle) vibrations. Stretching can be
either symmetrical (in-phase stretching) of asymmetrical (out-of-phase). Bending

vibrations are further divided into scissoring, wagging, rocking and twisting|40,
42].

Furthermore, it is important to know, that one selection rule for allowed vibrational
state transitions is a non-zero change in the electric dipole moment. This rule
prohibits certain excitations, such as the symmetric CO5 stretching.

To sum up, IR radiation with a certain wavenumber gets absorbed by certain
molecules, which are excited into higher vibrational states. If the sample is ir-
radiated with IR radiation of wavenumber 7 and known intensity I(7,0), the ab-
sorbance can be quantified by measuring the intensity of transmitted radiation /(7).
Transmittance T(v) is defined as the ratio of transmitted and initial intensity:

o 1)
T(v) = T(.0) (4.5)
The absorbance A(v) is defined as
A(r) = logyg ﬁ = logyg % (4.6)

The Beer-Lambert law (Eq. (4.7)) states that the absorbance A(r) is proportional
to the sample thickness £ (pathlength), the concentration ¢ of the substance and
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the wavenumber dependent absorptivity «(7), which contains the information about
the excitable vibrational states.

A(D) = w(D)c (4.7)

4.2.2 FT-IR Microscopy

As already mentioned IR spectroscopy measures the wavenumber dependent ab-
sorptivity of a sample. For this purpose, first a background spectrum is acquired
to estimate the initial intensity /(7,0) of the beam without absorption in a sample.
Subsequently the beam intensity /() after interaction with the sample is measured
and the ratio is computed.

The first IR spectrometers included a dispersive element and a single-element detec-
tor. The dispersive element (e.g. prism or grating) is turned in order to scan over
all wavenumbers. As this procedure is time consuming, today normally Fourier
transform infrared (FTIR) spectrometers are used instead. Those are based on
a Michelson-Morley interferometer. The beam of the polychromatic light source
is split into two beams by a semi-permeable mirror (beamsplitter). One beam is
reflected by a fixed mirror (fixed pathlength), the other one is reflected by a peri-
odically moving mirror (varying pathlength). The two beams are recombined and
the resulting wavenumber dependent interferogram is acquired|43].

FTIR-microscopy is the combination of IR spectroscopy and microscopy. In con-
trary to conventional FTIR-spectrometers it enables focusing of the IR beam to the
dimensions of the sample, which results in an increased signal to noise ratio (SNR)
due to the higher photon throughput. Depending on the application different de-
tectors are used, e.g. single element detectors or focal plane array (FPA) detectors.
The latter consist of an array of n x m detector elements. Advances in detector
technologies include the microbolometer, which does not require cooling, is less
expensive than common detector technologies and enables real time imaging.

4.2.3 Spectral Characteristics of Biological Samples in
Mid-IR

Biological samples consist of a mixture of numerous biomolecules and the spectra
therefore exhibit overlapping bands. The resulting bands are specific to differences
in protein, carbohydrate, lipid composition and DNA conformational changes|44|.

Mostly it is impossible to assign a certain vibrational mode to a peak. However, the
various bands are rather assigned to a certain functional group. In the following
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only the fingerprint region is considered. The relevant bands for this study are
listed in Tbl. 4.2 and illustrated in Fig. 4.4, which shows the acquired mean spectra
of various tissue types in the analyzed tissue sections.

Normally lipid bands also occur in the fingerprint range but as most lipids are
washed out during paraffin embedding (Sec. 4.2.4), the lipid bands are not men-
tioned in this section. Furthermore, bands which are overlapped by the paraffin
bands are not mentioned either.

Characteristic for all biological samples are the amide peaks (A,B,I.....IX), which
are due to vibrations of the peptide group in the protein backbone. The most
prominent band is the amide I peak (between 1620 and 1700 cm™'). Tt is mainly
assigned to C—=0 stretching, partly also to C-N stretching and N-H bending. The
location of the peak maximum is specific to the secondary conformation of proteins.
Furthermore, the amide II peak is also prominent in the fingerprint range. It has
a lower intensity than the amide I peak and is largely due to C-N stretching and
N-H in-plane bending.

Further, several bands are assigned to phosphate vibrational modes, which originate
mainly in it phosphodiester groups of nucleic acids. An increase in those bands indi-
cates an increase in nucleic acids, which can be found in malignant tissue|[46].

As mentioned in Sec. 4.1.1, the protein collagen is the main constituent of the
extracellular matrix (and hence the connective tissue in the cutis and subcutis). It
is thus relevant for correctly classifying dermis and subcutaneous tissue as well as
identifying strings of connective tissue within the lesion. Collagen consists of three
polypeptid chains (with a-helix secondary structure), which form together a triple
helix. There are more than 30 different types of collagen. The IR spectra of many
collagen types were analyzed by Belbachir et. al.[45]. In figure Fig. 4.4 collagen
bands can be seen in the spectra labeled Connective Tissue A-C.

Weak bands could also be assigned to the pigment melanin. However, not all
cancer cells of malignant melanoma need to contain melanin. In order to obtain
general results, which are not based on the melanin contribution, those bands are
not considered in this study and are not listed in Tbl. 4.2.

4.2.4 Effects of Formalin Fixation and Paraffin Embedding

There are various methods to prepare excised tissue sections for microscopy and
long-term storage|30, 51, 52|. All methods need to both, preserve the excised tissue
from autolysis and harden it to enable fine sectioning with the microtom into thin
slices (3 — 8 pm).
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Table 4.2: Band assignments for measured spectra of different tissue types. A constant
baseline of (a) A = (n—1)-0.05 and (b) A= (n—1)-0.002 is added to the n-th spectrum
for improved visualization. The characteristic intensity and shape of the bands are described
using abbreviations (vs: very strong, s: strong, m: medium, w: weak, vw: very waek/ vb:
very broad, b: broad, sp: sharp, sh: shoulder)[45-50]

Label 7, Vibrational mode Molecule Type
[em™]
a 1620- amide I,C=0 stretching,N-H bending, C-H  proteins vs, vb
1700  stretching
b 1520- amide IT , N-H bending, C-N stretching proteins s,b
1550
c 1400  symmetric CH3 bending proteins vw
d 1338 CH2 wagging vibrations from glycine collagen w,b
backbone and proline sidechains
e 1280  CH, wagging vibrations from glycine collagen VW
backbone and proline sidechains
f 1220- amide III and POy~ asymmetric stretching,  proteins, w,b
1280  C-N stretching, N-H bending DNA/RNA
g 1205 CH, wagging vibrations from glycine collagen vw, sh
backbone and proline sidechains
h 1150  C-C and C-O stretching proteins w, b
i 1080 POy symmetric stretching DNA/RNA w, b
i 1080  vibrational modes of carbohydrate residues  proteins w, b
(e.g. C-O, C-C-O and C-C skeletal
stretching)
i 1035  vibrational modes of carbohydrate residues  proteins w, b
(e.g. C-O, C-C-O and C-C skeletal
stretching)
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Figure 4.4: Acquired average spectra of selected tissue types. Connective Tissue A-C are
three different types of connective tissue solely identified by spectral differences.
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The two most common techniques are formalin fization and paraffin embedding
(FFPE) and cryopreservation (snap freezing) of the tissue, respectively. Both
methods have advantages and disadvantages and are selected based on the spe-
cific purpose.

In case of cryopreservation the excised tissue is hardened by snap freezing in liquid
nitrogen cooled isopentane (—160°C) and sectioned. In case of light microscopy
the tissue section is subsequently stained. The frozen tissue sections have to be
stored. This method is often used to determine tumor margins during surgery, as
the processing takes less time than formalin fixation and paraffin embedding. Fur-
thermore, as no organic solvents that could cause loss of some cellular components
are used, snap freezing is often preferred for molecular based studies. However, snap
frozen sections have to be constantly frozen and thus storage is more complicated
and expensive.

Fixatives are chemicals which inactivate lysosomal enzymes and inhibit the growth
of molds and bacteria. Formalin fixation and paraffin embedding (FFPE) is based
on first fixating the tissue in (most commonly) 10% formalin, which is equivalent
to a 4% aqueous solution of formaledhyde'®. Hydrated formalin cross-links the
primary and secondary amine groups of proteins. However, selected lipids are
preserved by reaction of formalin with the double bonds of the hydrocarbon chains
of the lipids.

After formalin fixation the tissue section has to be hardened for sectioning, which
is achieved by embedding it into molten paraffin wax. For this to happen, the
tissue block has to be dehydrated first. Dehydration is carried out by consecutive
immersion of the tissue in solutions of increasing alcohol concentration until 100%
alcohol. Several molecular changes are induced by this step such as denaturation
of the protein tertiary structure or significant precipitation of lipid molecules that
are not preserved through the primary fixation step. Subsequently the tissue is
permeated by molten paraffin wax. When the paraffin block is cooled down to
room temperature, thin sections can be cut without destruction of cellular struc-
ture.

For light microscopic analysis the tissue sections are then deparaffinized to be subse-
quently stained. Most commonly hematozylin and eosin stain (H € E is used.

As paraffin wax shows strong signals in the mid-IR region, FFPE tissue sections are
often chemically deparaffinized for IR analysis as well. However, chemical dewaxing
is time consuming, uses again chemicals which have potential effect on the tissue
sections and does not always remove the paraffin completely. Thus, in several stud-
ies tissue is used without dewaxing, in which spectral regions affected by paraffin

15 Formalin contains 40% w/w formaldehyde in water with the addition of 10% methanol.
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Table 4.3: Assignment of paraffin bands in measured samples [42, 54]

Band position [cm™!] Remarks

1375 Methyl symmetrical C-H bending
1462 Methylene scissoring
1471 Methyl asymmetrical C-H bending
2848 Methylene symmetrical C-H stretching
2920 Methylene asymmetrical C-H stretching
2954 Methyl asymmetrical C-H stretching
1.6
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1.2
1 .
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Figure 4.5: Mean spectrum of pure paraffin. Data taken from measuring pure paraffin regions
of a FFPE embedded tissue section.

are either left out, or the paraffin contribution is neutralized by Ezxtendend Mul-
tiplicative Signal Correction (EMSC') based algorithm or the spectra are digitally
dewaxed by independent component analysis|53].

Here, FFPE tissue sections are used for IR imaging. To sum up, the main effects
of the FFPE procedure on the spectra are the addition of the paraffin wax bands
and the loss of the lipid bands. Fig. 4.5 shows the average of pure paraffin spectra,
which were acquired at regions with no tissue present. The corresponding band
assignments are listed in Thl. 4.3.
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4.2.5 Data Pre-Processing

Infrared spectra are distorted by undesirable effects, which should be corrected
during pre-processing in order to guarantee optimal and reliable information output.
There is no general procedure for pre-processing of IR images. Selected methods
rather depend on the individual case (sample characteristics, data acquisition etc.).
However, some concepts always have to be considered and can be divided into nouse
reduction and spectral correction methods. Denoising accounts for random errors
(noise), while spectral correction accounts for systematic errors (baseline effects,
scattering etc.)

Noise reduction: Spectra of IR images inhibit noise due to various effects (de-
tector noise, electronic noise etc.), which is to be reduced prior to further pre-
processing and analysis. In current SHP studies various noise removal tools are
implemented, such as Savitzky Golay smoothing, wavelet denoising, noise adjusted
PCA (NAPC) or mazimum noise fraction (MNF) transform|55]. In this thesis
MNF is featured|44, 56, 57].

Green et al. |57] introduced in 1988 the Mazimum Noise Fraction Transform
(MNF) for noise filtering of hyperspectral images. It assumes an additive noise
model, i.e. each sample (pixel) spectrum can be decomposed into a signal and a
noise term.

Xi = Xs.i + Xn,i (48)
Y=3+3,

In analogy to PCA, MNF is based on a linear transformation to a new basis. As a
reminder, in PCA data are transformed to the eigenspace of the sample covariance
matrix 3, resulting in features ordered by decreasing variance. MNF transforms
the data to the eigenspace of X,37!, resulting in features which are ordered by
decreasing noise fraction rather than variance. The noise fraction of the i-th feature
is defined as

var(Xn,i) (4.9)

var(Xs;)

The first k& components (components with the highest noise fraction) are assumed
to contain only noise and can be excluded for back transformation to the original
data space. In order to compute the transformation, the signal and noise covariance
matrices (Xg and X,,) have to be estimated. For this purpose the fact is exploited,
that at any region in the image the signal is strongly correlated, while the noise
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only exhibits weak spatial correlation. It has to be emphasized that information
about the noise structure of the dataset (salt & pepper noise/gaussian noise, vertical
stripes, horizontal stripes, diagonal stripes, fringes,...) is required for computing
3. Thus, it is crucial to select the correct noise structure.

Spectral correction methods are routines to remove or neutralize adverse at-
tributes of the spectra, such as baseline distortions (due to scattering, changing
conditions during data acquisition, instrumental factors etc.) and spectral compo-
nents due to an additional, disturbing compound (such as water vapor, paraffin,
absorption by a supporting substrate, etc.)[55]. In this study spectra have to be
corrected for two effects:

e Paraffin contributions: As described in Sec. 4.2.4, paraffin wax displays
strong bands in the fingerprint region. If the samples are not chemically
dewaxed the paraffin contribution has to be either neutralized (e.g. by using
EMSC) or digitally removed|53, 58|.

e Resonant Mie scattering: Morphological variations in biological tissues
and cells result in strong scattering effects, which express themselves in base-
line distortions as well as band maxima shifts (shifting to lower wavenumbers).
It has been shown that the broad baseline oscillation can be explained by Mie
scattering, the scattering of electromagnetic radiation on homogenous, spher-
ical absorbing particles. The simplest model to approximate the scattered
radiation Qscatter Was introduced by Hendrik C. Van de Hulst (Eq. (4.10))[59-
62|

4 4
scatter = 2 — —sinp + — (1 — cos

p=2md(n—1)v

d is the particle diameter and n = ngy /N4, the ratio of the real refractive
indices of the sample (ng,) and the surrounding medium (air,n,;, = 1). How-
ever, this model fails to explain the shift of the band maxima. Bassan et.
al.|62] have shown that the latter can be explained by resonant Mie scatter-
ing, which considers a complex refractive index of the sample:

n(v) =n,(v) —1i- k(D) (4.11)
As a result of considering the complex refractive index, maximal absorptivity

leads to anomalous dispersion which is expressed in the peak maximum shift.
The imaginary part (absorptivity (7)) is related to the real part n,.(7) by
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the Kramers-Kronig transform. Finally the real refractive index, which is
required to compute the scatter curves in Eq. (4.10) can be written as

n.(7) =a+b-ng (4.12)

with the average refractive index a and the scaling parameter b and the result
of the Kramers-Kronig transform n,,. A detailed explanation of the physical
background and the correction model can be found in Bassan ef. al. [63].

In principle, pure baseline effects can be corrected by various methods, the most
simple algorithms are based on polynomial or spline interpolation. In case of IR
spectra it is common to choose 4th-order polynomials for base line approximation.
Considering these baseline effects is crucial for valid analysis of the spectra, es-
pecially if the analysis is based only on intensity values at selected wavenumbers.
However, if baseline corrected spectral descriptors are used baseline correction of
the spectra is less crucial.

Another approach for spectral correction is the Eztended Multiplicative Signal Cor-
rection (EMSC)|64, 65] which achieves both the neutralization of an additional
compound as well as the correction of the baseline[65].

It basically assumes that each measured absorbance spectrum A(7) can be approx-
imated by the average spectrum z(7), an n-th order polynomial to explain baseline
distortions and the residual e(7)

AD) = az(v) + Z bv' + e(v) (4.13)

In order to account for irrelevant effects specific orthogonal subspace models are
introduced in Eq. (4.13), resulting in Eq. (4.14). Here, the spectra are corrected
for paraffin wax contributions by incorporating the subspace Y., ¢;p(7); and for
resonant Mie scattering by including Y"1 d;r(7);.

np+1 nr+1

A() = az(v) + ZW + Z cp(); + Z dir(D); + e(7) (4.14)

Subsequently for each spectrum the model parameters a, b, ¢ and d are fitted my
linear least squares regression and the corrected spectrum is computed by

np+1 nr+1

AW )eorr = (A(F) Sobr =Y = 3 de@))  (115)

=1
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The subspace models are created as followed:

e Paraffin model: Images with pure paraffin are measured and analyzed by
principal component analysis. The first np eigenvectors and the average paraf-
fin spectrum are to be included in the model.[53, 58, 66].

e Resonant Mie scattering: (.. curves are created for different d and
n. Subsequently a principal component analysis is conducted on the resulting
curves. The first ng eigenvectors and the average scatter curve are to be
included in the model[62]¢.

It has to be emphasized that one advantage of EMSC is that it not only neutralizes
the spectra from paraffin and corrects scattering effects, but also normalizes the
spectra.

Normalization: If the spectra are corrected by other methods than EMSC, they
usually have to be normalized to account for different pathlengths. Common ap-
proaches are the correction to an internal standard (specific wavenumber) or vector
normalization and have been mentioned in Sec. 2.1. Infrared spectra of biological
compounds are often normalized to the amide I peak (after baseline correction). For
second derivative spectra vector normalization is commonly applied [40, 55|

4.3 Current Status of Using SHP for Diagnostics of
Malignant Melanoma

Infrared microscopy emerged as a non-destructive, label free and sensitive method
to analyze various materials. Due to low spatial resolution it could not be used for
analyzing biological tissue on microscopic scale until the 1990s, though. However,
recent developments in imaging technology and data processing have led to higher

16 In case of the Mie scatter model this approach is straight forward and scatter curves with
parameters d = 2 to 20 pm and n = 1 to 1.5 are created.

In case of RMieS the parameters d = 2 to 20 pm, a = 1.1 to 1.5 and b = 0 to (a — 1) are varied
to obtain different Qgeqtter Curves.

However, resonant Mie scattering requires an absorption spectrum A(7) (and thus k(7)) to
compute the corresponding real refractive index n,(). This is crucial, as a non optimal
reference spectrum will not adjust the spectra correctly. To account for this fact, after first
correction with an average spectrum, each pixel is iteratively corrected with the processed
spectrum as the new reference spectrum. With this approach, spectra can be corrected reliably
even when the differs from the true pixel spectrum. However, the iterations of the RMieSEMSC
algorithm require long computation times (several hours for a few iterations of average sized
image)
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resolution and faster image acquisition and have made IR imaging a powerful tool
in spectral histopathology (SHP). Detailed descriptions on current developments,
studies and methods can be found in various review papers|44, 46, 47, 50, 60, 67—
69].

Most studies on F'TIR analysis of skin biopsies focus on cluster analysis as a chemo-
metric tool, both on deparaffinized and paraffin embedded tissue. Studies on paraf-
fin embedded tissue are conducted e.g. by Tfayli et. al. (discrimination of nevus
and melanoma on paraffin-embedded skin biopsies using hierarchical cluster analy-
sis (HCA) [48]), Sebiskveradze et. al. (description of an innovative fuzzy C-means
(FCM)-based clustering algorithm, allowing the automatic and simultaneous esti-
mation of the optimal FCM parameters|70]) and Ly et. al. (combination of FTIR
spectral imaging and chemometrics for tumour detection from paraffin-embedded
biopsies [66]).

Belbachir et. al. analyzed and characterized different collagen types based on their
spectra.[45]. Some studies focus on identifying diagnostic parameters and feature
selection, respectively, as well as suitable computational or statistical methods |71,
72]. Various publications consider digital dewaxing methods on IR images and their
effects|53, 73, 74].

All in all, the power of IR analysis for spectral histopathology is exhibited by
all studies. However, some studies showed that in contrast to FTIR, Raman
spectroscopy manages to distinguish the sublayers of the epidermis (on dewaxed
tissue)|75].
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Chapter 5

Methods for Data Acquisition and
Tissue Classification

5.1 Sample Preparation and Characteristics

Tissue sections of five melanoma samples have been obtained from the Department
of Pathophysiology and Allergy Research (Center for Pathophysiology, Infectiology
and Immunology, Medical University Vienna Vienna, Austria). The samples are
formalin fixed and paraffin embedded (FFPE) and mounted on a CaFly, sample
carrier. The adjacent FFPE tissue sections are H & E stained in order to obtain
labeled test and training data. Thl. 5.1 summarizes the characteristics of the tissue
sections.

5.2 Data Acquisition

The images were collected in transmission mode on a FTIR-microscope Bruker
Hyperion 3000 with a liquid nitrogen cooled 64 x 64 pixel FPA detector, featuring
a sample area of 175 x 175pm. A 15-fold objective and 4 x 4 binning was used,
resulting in a pixel size of 2.7 -4 = 10.8pm. For each measurement position 4
scans were accumulated to enhance the S/N ratio. A background scan on the
CaFl, slide was conducted every 20 scans using 32 accumulations. Spectra were
acquired between 7 = 3845 and 879 cm ™! with a spectral resolution of 2cm™'. The
sample chamber was purged with dry air to reduce spectral components of water
vapor.

The measured image sections (3-4 sections for each sample) were selected according
to the adjacent H & E stained sections and cover areas between approx. 1 and
10mm?. The image acquisition took less than 1h for smaller and 3 to 4h for larger
images. The resulting file sizes range from less than 500 MB to approx. 2 GB.
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Table 5.1: Summarized histological diagnosis of the measured samples. Training data are
taken from samples 1-3 only.

Idx.Type Breslow TNM Mitotic Remarks
depth activity
1 Nodular 5mm pT4b > 1mm~'  Superficial ulceration
Nodular 15mm pT4a LO Moderately pigmented,
2 V0 Nx focally-arranged melanin
Mx RO pigment, pressure atrophy
Superficial 2.1 mm pT3a, > 1mm~! Solitary satellite lesion
3  spreading pN2c, (pN2c¢)
local RO
Partly 4.05 mm pT4b > 1mm~!'  Superficial ulceration
4 nodular /
polypoid
Superficial 2.95mm  pTx > 1mm~' Superficial ulceration,
5  spreading irregularities in
with pigmentation and
nodular fibrosclerosis
compo-
nent

5.3 Pre-processing

Data are processed using ImageLab (v.1.98, Epina GmbH, Pressbaum, Austria) and
MATLAB 2015b (The MathWorks, Inc., Natick, Massachusetts, United States).

Most processing steps are based on the application of spectral descriptors, which
have been introduced in Sec. 1.2. In the following, the spectral descriptors are
referred to by the abbreviations which have been assigned in Sec. 1.2.

Selecting spectral region of interest: Even though the amide A peak (be-
tween 3300 and cm™!) also inhibits interesting features (e.g. epidermis can be
distinguished from dermis by the amide A peak shift due to collagen contributions)
spectra are cut to the fingerprint region (7 = 1800 to ¥ = 1000 cm™!) prior to any
further pre-processing.

Maximum noise transform: MNF is chosen for noise removal, with a salt and
pepper noise structure. The resulting MNF-components are manually analyzed
and all components which enable visual identification of a tissue structure are se-
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Table 5.2: Spectral descriptor for exclusion of bad pixel

Nb. Spec. Type Reference v [cm-1] Baseline

Reference v [cm-1] Neighbors

DC001 TCI 1655 1714, 1591 5

lected for back transformation. In most cases, the selected components are those
with the lowest noise fraction and the highest auto-correlation factor, respectively.
Depending on the image, between 15 and 30 components are used for back trans-
formation.

Exclusion of bad pixel: Next all pixel which do not exhibit a distinct contribu-
tion of a biological spectrum are assigned as background pixel. As a criterion for
distinct tissue contributions the correlation of the amide I peak area with a posi-
tive triangle template peak is computed and multiplied by the signal area (spectral
descriptor DC001; see descriptor specification in Thl. 5.2). The resulting values
are plotted in an intensity histogram. The logarithm of the intensity histogram
counts is interpolated by a penalized spline in the interval from DC001 = 0 to
DC001 = 6.

The first minimum of the resulting curve is estimated by a minimum search and is
taken as a threshold. Fig. 5.1 illustrates this histogram and the interpolated curve
for one tissue section.

This procedure excludes pixel
e with pure paraffin spectrum,

e with vanishingly low contribution of a biological spectrum (due to scattering
or adipose tissue of the subcutis, as most lipids are washed out during sample
preparation),

e of the empty CaFl, slide.

Selection of training, test and paraffin data: Subsequently regions for train-
ing and test data are defined. This is explicitly carried out before spectral correction
by EMSC as the mean spectrum of the training data is used during the RMieS algo-
rithm (see below). Due to the spectral and biomolecular characteristics six classes
are defined, which are listed in Thbl. 5.3.

According to the H & E stains, which are adjacent to the measured tissue sections,
several 10 x 10 pixel areas were selected from the tissue sections and assigned to a
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Figure 5.1: Logarithmic intensity histogram of D001 (descriptor to identify background pixel).
The histogram counts are interpolated by a penalized spline (blue curve)

Table 5.3: Defined classes and the component that is expected to provide spectral contribu-
tions, which are class specific.

No. Label Expected class specific component Color

1 Epidermis Keratin Dark blue
2 Malignant melanoma DNA/RNA concentration Red

3 Connective tissue A Collagen Yellow

4 Connective tissue B Collagen Purple

5 Connective tissue C  Collagen Green

6 Ulceration Erythrocytes Light blue
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certain class. However, it is important to emphasize that the stained tissue section
and the IR measured section exhibit slight differences. On the one hand, because
during sample preparation they are distorted in slightly different ways. On the
other hand, the cellular features of different layers may also underlie variations as
the sample thickness is 8pm. Thus, it is difficult to overlay the images reliably.
However, using the H & E stains together with chemical images of the (denoised)
data helps to correctly choose training data.

Fig. 5.2 illustrates the process of training data selection on a region of S2, which
exhibits melanoma, epidermis and two distinguishable types of connective tissue. A
chemical image of the amide I peak intensity is useful to identify structures, which
can be found on the stained sections. This procedure also allows the selection of
training sets when the stained and the IR imaged sections are not directly adjacent
(if further tissue sections were taken in between the one measured by IR and the
stained tissue section).

Certain regions of samples S1 to S3 are selected and merged together as training
data, leaving samples S4 and S5 as test sets only. This is important, as the aim is
to develop a classifier which leads to reliable results on unknown tissue section of
other patients. Between the patients there is always a slight variation of the cellular
components, which must not make any difference in the classification performance.
To test this requirement, the classifier is trained on selected spectra from S1-S3 and
tested on other regions of S1-S3 as well as regions of S4 and S5.

For each class there are all together about 3000 pixels collected as potential training
data. A random subset of 50, 200 and 400 pixels per class was selected as training
sets for different classification scenarios.

As the training spectra will also be used as reference for the spectral correction
(see below), it is important to ensure during the selection process that they are not
dominated by scattering effects.

Signal correction using EMSC: The spectra are corrected by means of EMSC
using the RMieS-EMSC algorithm with an additional orthogonal subspace model to
account for the paraffin contribution. The developed script for spectral correction
is based on the MATLAB EMSC Toolbox provided by Martens et. al.[64, 76,
77).

As baseline distortions are corrected by the subspace model of the scattering curves,
no high order polynomials are required. Here, a polynomial of order 1 (n = 1
constant and linear baseline) is chosen for the polynomial correction.

To create the PCA model of paraffin, 5000 spectra were randomly selected on
regions of pure paraffin of the training samples. Data are standardized prior to
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0.00 050 1.00

Figure 5.2: Example for training set assignment. Left) Chemical image of 7 = 1655 cm ™!

(amide I) with assigned training sets: Blue: epidermis, red: melanoma, yellow: connective
tissue A and purple: connective tissue B. Right) H & E stain of the adjacent tissue section.

PCA. The first three components of the paraffin model explain 97 % of the total
variance and are selected for the subspace model, together with the mean paraffin
spectrum. The components as well as the subspace model are smoothed by a moving
average with a kernel size of 5.

The initial reference spectrum for computing the resonant Mie scatter subspace is
retrieved from averaging the training data, as explained and reasoned below. The
mean spectrum is smoothed by a moving average with a kernel size of 5. Scatter
curves for different parameters (d = 2 to 20pm, ¢ = 1.1 to 1.5 and b = 0 to
(a — 1)|63]) are computed using an algorithm for the Kramers Kronig transform
based on Lucarini el. al.[78]. After the subsequent (standardized) PCA the first 6
principal components and the average scatter spectrum are chosen for the subspace
model. The first 6 PCs explain 99 % of the variance.

As mentioned in Sec. 4.2.5, literature suggests to use the RMieS-EMSC correction
iteratively, taking the corrected spectrum of a pixel as new references spectrum for a
subsequent correction. It is stated that at least a few iterations are required, in order
to completely correct the spectra independently of a non-optimal initial reference
spectrum. However, the aim is to improve the classification process considering
performance and required computation time. As the iteration cycles of the RMieS-
EMSC algorithm require high computation time, an approach without iterations
but an improved initial reference spectrum is attempted.

The mean spectrum is computed for the training samples of each class. The re-
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sulting mean class spectra are again averaged to obtain a mean spectrum of all
tissue types. This 2-step averaging process is chosen to ensure equal weights for all
classes. If the mean spectrum is closer to one than to the other classes, features
of this spectrum will be enhanced during correction. This is also the reason, why
the average training data spectrum is used as a reference rather than the mean
spectrum of the individual tissue section, as it cannot be ensured that all tissue
types are equally frequent in each image. Furthermore, taking the mean spectrum
of training data from several samples also enables correction of differences between
patients, location of the lesion etc. A similar approach was used by Bird et al. for
correcting spectra of human lymph node tissue[79].

Second Derivative: After the spectral correction, the second derivative of the
spectra is computed and appended to the data cube. This allows to use both
the descriptors of the original spectrum and the features of the second derivative
spectrum for classification.

5.4 Classification

Based on the considerations and results in part I of this thesis, a Random Forest
is selected to classify the tissue sections. It is attempted to use a low number
of descriptors to avoid the curse of dimensionality and noise removal has been
conducted on the data prior during pre-processing. Different classifiers featuring
different amounts of training data (N,c = 50, 200 or 400) are trained and tested
subsequently.

The descriptor set is created by manually selecting spectral descriptors with the
Spectral Descriptor Tool of Imagel.ab in order to exhibit intensity histograms which
seem advantageous for class discrimination. 18 spectral descriptors are selected and
listed in Thl. 5.4, using the abbreviations which are introduced in Sec. 1.2.

However, it has to be emphasized that the selected descriptors are correlated. While
this correlation is irrelevant for the performance of the RF classifier, it is impor-
tant to be considered in other chemometric methods. To add this information,
multicollinearities are analyzed by stating the variance inflation factor (VIF). This
information is not specifically relevant for the RF classifier!'.

17 High descriptor correlation does not imply that no complementary information can be found in
the descriptors. While adding perfectly correlated variables to a model does not improve class
separation, class separation can be enhanced due to noise reduction by including correlated
variables in a model[80].
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86 5.5 Performance Estimation

Parameter selection: For each classifier the optimum number of trees is estimated
via cross validation using the out of bag error. The number of randomly selected
descriptors per leaf is set to the square root of the number of descriptors (\/E, with
d being the dimension of the data space). For creating each split Ny.q;n, samples
are selected randomly with replacement.

5.5 Performance Estimation

As the stained tissue sections exhibit clear distortions from the measured samples
and are not always directly adjacent it does not seem meaningful to specify per-
formance measures such as accuracy, sensitivity and selectivity. Staining of the
measured tissue sections subsequent to data acquisition was intended but the sam-
ples detached from the slides during the staining process.

The uncertainty in correctly choosing the test data could influence the performance
measures considerably. Therefore, the results are interpreted visually and explained
qualitatively.
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Table 5.4: Selected spectral descriptors for classification

Spec. Type Reference v Baseline
[cm-1]
Reference v Neigh-
[cm-1] bors

DC002 TCI 1354 1375..1333 0
DC003 ABL 1352..1294 * 0
DC004 TC 1335 1354..1321 5
DC005 PLV 1236 1267 5
DCO006 RLV 1275/1294 1236 0
DCO007 TC 1230 1298..1115 5
DCO008 ARW  1142..1007 *
DC009 PLV 1070 1132 0
DC010 2. dv PRW 1674
DCO011 2. dv TCI 1662 1680..1647 5
DCO012 2. dv ABL 1658..1687 * 0
DCO013 2. dv ABL 1662..1630 * 0
DC014 2. dv PRW 1651
DCO015 2. dv  ABL 1628..1639 * 0
DC016 2. dv PRW 1633
DCO017 2. dv TC 1633 1630..1641 0
DC018 2. dv TCI 1624 1618..1631 5
DC019 2. dv BBL 101 * 0

1562..1523
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Chapter 6

Results and Discussion of Skin
Tissue Classification

6.1 Tissue Spectra

Fig. 6.1 illustrates the obtained average class spectra and their second derivative
after spectral correction (paraffin neutralization and resonant Mie scatter correction
using EMSC). The apparent spectral differences have been mentioned and explained
in Sec. 4.2.3.

6.2 Properties of Spectral Descriptors and Random
Forest Classifier

As mentioned in Sec. 5.4, the applied spectral descriptors are selected manually
with the attempt to encode as much chemical information as possible.

Although this is not relevant for the Random Forest classifier, the generated de-
scriptor sets are tested for multi-collinearities by means of the wvariance inflation
factor (VIF). Consecutive deselection of the descriptors with the highest VIF re-
sults in descriptor sets B and C, which would be suitable for statistical methods,
that required decorrelated data. Tbl. 6.1 summarizes the resulting VIF values for
the individual descriptor sets and refers to the original descriptor set (18 descrip-
tors) as set A. For descriptor set C, all VIF are less than 15 for all remaining
variables. However, it has to be pointed out that all RF models in this study have
been trained with the original descriptor set (Set A).

The used number of trees Ny.. is chosen by analyzing the out of bag error rate
(OOB estimate). Fig. 6.2 illustrates this OOB curve for RF models. In most cases
Niree = 20 is selected.
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6.2 Properties of Spectral Descriptors and Random Forest Classifier
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Figure 6.1: Average spectrum (a) and 2nd derivative spectrum (b) of the acquired training

data for each class after spectral correction. A constant baseline of (a) A

(b) A=

(n—1)-0.05 and

(n —1)-0.002 is added to the n-th spectrum for improved visualization.

Table 6.1: Analysis of multi-collinearities by means of the variance inflation factor. (VIF)

DC: 002 003 004 005 006 007 008

009 010 011 012 013 014 015 016 017 018 019

A 828 182 7.9 19.2 189 110 156
B 136 17.1 11.7 294 13.7 x X
C 134 119 10.1 x 13.2 x 8.2

67.0 12.6 14.5 46.2 129 100 75.5 7.2 17.4 31.8 88.2
6.4 14.8 6.3 9.20 103 899 x X X 5.2 11.5
2.7 13.8 5.6 x X 153 x X X 4.3 10.2
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Figure 6.2: Typical out of bag error estimate curve for selection of Ny, illustrating errors
for different training set sizes.

The descriptors are analyzed qualitatively by means of a PCA biplot (score and
loading plot, Fig. 6.3). It becomes apparent, that in the created model melanoma
is largely characterized by the fact, that it exhibits no extreme values for any
descriptor. The effect of this will be discussed later.

PC2 PC4

PC4 PC1
(a) (b)

Figure 6.3: Biplot (scores and loadings) resulting from Principal Component Analysis of the
training data. The descriptor labels correspond to the labels in Tbl. 5.4. The approximate re-
gions in the score plots that are occupied by distinct classes are encircled (dark blue: epidermis,
red: melanoma, yellow: connective tissue A, purple: connective tissue B, green: connective
tissue C, light blue: ulceration tissue). (a) PC4 vs. PC 2; (b) PC1 vs. PC 4
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92 6.3 Qualitative Assessment of Classified Tissue Sections

6.3 Qualitative Assessment of Classified Tissue
Sections

In this section, selected obtained digital stains for different classifiers are compared
to corresponding H & E stains and qualitatively discussed in terms of performance.
All results have been discussed with and approved by a dermatologist. The featured
stains are selected to represent both, the strengths and the faults of the applied
method.

It has to be mentioned again, that no quantitative performance estimation is con-
ducted as no confident pixel assignment is possible between the two tissue sections.
This is due to distortions between the IR measured and the H & E stained samples.
Thus, the error in selecting a correct test set could vastly influence the obtained
performance measure. This is also the reason for some differences between the H
& E stains and the "digital" stains in the following figures.

It is suggested that if it is not possible to stain the tissue section after IR analysis,
both adjacent tissue sections are H & E stained, enabling a subsequent pixel in-
terpolation between the three obtained images. Furthermore, it should be ensured

that there are no further tissue sections between the IR measured sample and the
H & E stain.

In general, correct tissue assignment is achieved by all differently trained classifiers
(all training data sizes and descriptor sets). The classifiers distinguish well between
epidermis, melanoma, different connective tissues and ulceration. Especially the
clear differentiation between strings of connective tissue within the lesion should
to be pointed out. Furthermore, ulcerating tissue is detected with high assignment
probability.

Correct tissue assignment is achieved for both, samples of which certain areas have
been used as training data (S1, S2 and S3; Fig. 6.4, Fig. 6.5, Fig. 6.10 and Fig. 6.9 )
and samples of which no data have been taken for training (S4, S5; Fig. 6.6, Fig. 6.7
and Fig. 6.8).

It can be seen in all sections, that apart from melanoma tissue, also blood vessels
and transitions between two tissues (especially the basal layer between epidermis
and connective tissue) tend to be detected as melanoma (red pixel assignment, com-
pare boxes in Fig. 6.9 and Fig. 6.10). Those false positive melanoma assignments
can be explained by various effects.

Firstly, no training data and class is assigned to the walls of blood vessel (endothe-
lium; muscle in case of arteries), thus those spectra cannot be assigned to any known
class. The same applies to the basal membrane, the transition of epidermis and
connective tissue. Obviously melanocytes are present in the basal membrane, which
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could exhibit a similar spectrum as melanoma cells. However, due to the extent
of the wrongly marked pixels and the fact, that false positive melanoma labeling
can be obtained as well at the horny layer of the epidermis, those assignments are
rather explained by the fact that the spectra at the transition become indistinct
due to lateral resolution limits. Insufficient scatter correction has also been con-
sidered as a possible reason, but has been discarded as the original spectra before
pre-processing do not show strong scatter effects for the respective pixels.

Such indistinct spectra are assigned to melanoma, as in contrast to other tissue no
descriptor is a clear indicator for melanoma. Melanoma is rather recognized as the
pixel with "values in between epidermis and connective tissue" for most descriptors.
This is also illustrated well in the PCA biplots (Fig. 6.3). The problem is assumed to
be solved when a descriptor can be found, which features a maximum or minimum
value for melanoma. However, the bands which should be indicative for melanoma
are either bands due to lipids, which have been washed out during FFPE tissue
preparation, or peaks due to phosphate. Latter are mostly overlapped by protein
bands (e.g. amide IIT), which are prominent in other tissue types as well. However,
there is no doubt that a suitable descriptor can be estimated for FFPE prepared
tissue sections.

Fig. 6.9 and Fig. 6.10 illustrate the tendency of false positive melanoma assignments
for differently trained classifiers. Regions of interest are marked by the boxes. In
Fig. 6.9 a tissue section of S3 with no present melanoma is classified. However,
at the transition of epidermis (blue) to dermis (connective tissue: purple, green)
several pixel are identified as melanoma (upper box). Furthermore, blood vessels
are wrongly marked as melanoma (lower box). Tt is interesting that the false positive
melanoma labeling decreases with increasing training set size.

Fig. 6.10 presents the obtained stains of the transition from melanoma to cutis and
subcutis in 52, featuring the classifier with 400 training data per class. Because
adipose tissue is predominant in the subcutis, most of it is masked during pre-
processing as background (due to lipid loss during paraffin embedding). Obtained
digital stains featuring different probability threshold values (0.5, 0.6 and 0.7) for
positive class assignment are illustrated. It can be seen, that for a threshold of 0.7,
most of the melanoma tissue is still classified as melanoma, while the false positive
melanoma assignments (here: blood vessels) decrease. However, the general rate of
non assignable pixels obviously increases.
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Figure 6.4: Sample 2 (included in training); epidermis, melanoma, different types of cutanous
tisssue. Npc = 400
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Figure 6.5: Sample 5 (included in training); melanoma, strings of connective tissue, ulceration.
Nyc =400

94



Chapter 6 Results and Discussion of Skin Tissue Classification 95

Not Assigned
Epidermis
Melanoma

Connective Tissue A

y [ram]

Connective Tissue B
Connective Tissue C
Ulceration

Mask

x [mm]

(b)

Figure 6.6: Sample 7 (not included in training); melanoma, residuals of epidermis, connective
tissue. Npc = 400
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Figure 6.7: Sample 6 (not included in training); melanoma, elongated epidermis, connective
tissue with a large amount of blood vessels. N, = 400
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Figure 6.8: Sample 7 (not included in training); epidermis, melanoma, connective tissue.
Nyc =400
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Figure 6.9: Sample 3 (included in training); epidermis, cutis and subcutanous tissue. De-
pendency of false positive melanoma assignments on size of the training data set. The boxes
mark interesting regions for analyzing the false positive melanoma assignments (transition from
epidermis to dermis and blood vessels) and are valid for all subfigures.
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(c) thres = 0.7
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Figure 6.10: Sample 2 (included in training); transition from melanoma to subcutaneous
tissue and cutis. N,c = 400. Different threshold values (0.5,0.5,0.7) for the classification
probability are featured. The white/black box indicates an intersting region for evaluation the
false positive melanoma assignments (blood vessel). The green box indicates the respective
sector of this image which can be seen in the H & E stain. The boxes are valid for all subfigures
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Conclusion

In Part I the performance of classification algorithms on different artificial datasets
has been demonstrated. The datasets are designed to represent spectroscopic data
and are created according to two different models. Model 1 (ball model) does
not include any information about concentration but the data generation is more
simple and straightforward. Model 2 (ray model) is more complex, but contains
information about compound concentrations. All models are further varied in class
separability, noise level, dimension and size of the training dataset.

Applying the classifiers to datasets of the different models showed that after nor-
malization model 2 leads to similar results as model 1. This justifies the use of the
simpler model 1 for artificial dataset generation.

Consequences of the curse of dimensionality on the data distribution are reflected in
the results. Furthermore, the commonly known limitations of ANN in high dimen-
sional dataspaces are demonstrated clearly. In the case of non linearly separable
classes, it can be seen that KNN does not manage correct class assignment for
more than 5-15 dimensions, depending on the noise level and the training data size
(assuming uncorrelated variables). In addition the expected inability of PLS-DA
to discriminate non linearly separable datasets and the importance of a sufficient
amount of training data are reflected in the results.

While the classifier selection has proven not to be relevant for certain datasets (low
dimensions, linearly separable, low noise), for other datasets the advantages of the
Random Forest classifier are notable.

Based on these findings a Random Forest model is chosen for classifying infrared
hyperspectral images of skin tissue sections in Part II. Selected spectral descriptors
and different sizes of training datasets are used to train the classification models.
The model distinguishes epidermis, melanoma, ulcerating tissue and different kinds
of connective tissue. Correct tissue identification for all tissue types is achieved.
The model is applied successfully to create "digital stains" of samples which have
not been included in the training data.

An open problem are false positive melanoma assignments for isolated pixels at the
transition from epidermis to dermis (basal layer) and for pixels related to blood
vessels. This effect is explained by the mixture of different class spectra at those
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transitions and is expected to be reduced by identification and application of im-
proved descriptors, which are more selective towards melanoma cells.

Further improvement and generalization of the model is expected for a higher num-
ber of training data gathered from different patients. Additionally, in further in-
vestigations, samples featuring nevi should be analyzed and included in the model
as an additional class.

Recent high technological advances in infrared imaging, based on quantum cascade
lasers, lead to strongly reduced data acquisition times and are therefore ideally
suited for clinical applications. Together with improved classification methods,
this guarantees exciting years to come for the field of spectral histopathology.

98



Appendices

99






Appendix A

Comparison of Partial Least Square
to Principal Component Regression

Principal Component Analysis (PCA) performs a unitary change of basis (rota-
tion) to the eigenspace of the sample covariance matrix ¥, which is defined by
Eq. (A.1).

X ¢ R(nxd)

N ER(dXd)
1
n—1

= XTX (A1)

3 is a symmetric matrix with the sample variances as diagonal and the corre-
sponding co-variances as off-diagonal elements. Thus, by a change of basis to its
eigenspace X can be diagonalized.!'®

18 A vector space which is spanned by the eigenvectors of the operator A is called its eigenspace.

x is an eigenvector of A if the relation

is fulfilled. x; is the i-th eigenvector of A and ); is the corresponding i-th eigenvalue. For a d-
dimensional operator A there exists at least 1 and at most d linearly independent eigenvectors.
Thus, the eigenspace is a subspace of the original d-dimensional vector space. If, and only if,
A is symmetric (complex generalization: hermetic) d linearly independent eigenvectors are
found. In this case the operator can be diagonalized by a change of basis to its eigenspace.

A =VTD,4V
V eR(4%4) s the transformation matrix to the eigenspace of A, with the eigenvector x; e R(?*1)
as the i-th column. As A is symmetric, d linearly independent eigenvectors exist, which can
thus be orthogonalized and thus V is an orthogonal matrix. D 4 is a diagonal matrix with A;
as the i-th diagonal element, if x; is the i-th column of V.
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The eigenspace of the X is called Principal Component Space. The eigenvectors are
referred to as principal components (PC). Thus, a change of basis to the eigenspace
of X results in its diagonal representation, meaning that data were decorrelated as
all 0;; = 0 for ¢ # j. The remaining diagonal elements are the sample variances
along the axes of the new coordinate system - the principal components. PC-1 is
orientated along the direction with the largest variance, PC - 2 is along the direction
with the largest variance which is orthogonal to PC - 1 and so on. To sum up, the
idea behind PCA is to transform the data to its principal component space to
decorrelate them and to orientate the new axes along the orthogonal direction of
the largest variance.

This can be very useful, as in high dimensional data spaces the higher PCs often
only contain noise and all the information (large variances) is contained in the first
f PCs. If only the first f PCs are considered for further analysis PCA is thus very
powerful for the reduction of dimensionality and exploratory data analysis.

One drawback of PCA is that for the change of basis only the sample covariance
matrix is considered, without taking into account the relation of descriptors to a
response (e.g. classification output).

Although in many cases the directions of the highest variance of the descriptors
coincide with the directions for the best response prediction, this does not apply
to all cases. To solve this, Would adapted the PCA algorithm and created PLS,
a supervised learner, as it considers both, the predictors and the response, for the
change of basis.

While PCA is based on the diagonalisation of 3, PLS is based on the covariance
matrix of data X and response Y

1
n—1

cov(X,Y) = Xty (A.2)

In the following the idea and computation of PLS is outlined by direct comparison
to PCA. In both cases the NIPALS algorithm, which is illustrated briefly below,
is used to solve the eigenvalue problem. An alternative approach for computation
of the PLS components is the SIMPLS algorithm [21|. For a univariate response
Matrix (1 class), the SIMPLS algorithm is equivalent to NIPALS-PLS1 which is
explained below.
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PCA

Idea: Perform a change of basis

T =XV (A.3)
with the transformation matrix V
that results in uncorrelated trans-
formed data T, i.e. cov(T,T) is di-
agonal. The coordinates of the data
with respect to the transformed coor-
dinate space are called scores. The
basis vectors of the new basis (ex-
pressed by the initial coordinate sys-
tem) are called loadings and are the
column vectors of the transformation
matrix V.

The diagonal elements describe the
variance along the new basis vectors
and are ordered by decreasing value
(decreasing variance). The diagonal-
ization (eigenvalue) problem is de-
scribed by

XTX * Vi = )\iVi
cov(T, T) = VTEV
X =TVT +E

PLS

Idea: Perform changes of basis for
features and response variables to
new data spaces by the transforma-
tion matrices V and W that max-
imize the covariance cov(T,U) be-
tween the resulting feature and re-
sponse scores. The changes of basis
are described by (E and F are the
residual matrices)

X=T-VT
Y=U W"

+E
+F

and the scores T and U are related by
the linear regression (B is a diagonal
matrix)

U=TB (A.4)

The eigenvalue problem is described
by

XTYYTXw; = \w; (A.5)
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Figure A.1: lllustriation of NIPALS - algorithm for solving the eigenvalue problem of a) PCA

1
d—»
v L
X t
[ il
Vi

and b) PLS-DA
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NIPALS for PCA

. Initialization of t with an arbi-

trary column of X and normal-
ization

t = x; |t — 1

. Estimation of v by projection of

XT onto t and normalization

v=XTt |v]] — 1
Estimation of  iteratively
adapted t by projection of X
onto v and normalization

tola =t

t=Xv |t — 1
Repeat steps 1 and 2 until ||t —
toa|| < €, with the user defined
threshold e.

NIPALS for PLS

. Initialization of u with an arbi-

trary column of X and normal-
ization

u=x; |ul| =1

. Estimation of v by projection of

XT onto u and normalization

v =XTu |v|| =1

. Estimation of t by projection of

X onto v and normalization

t=Xv [t] =1

. Estimation of w by projection

of YT onto t and normalization

w=YTt lwl| —1

. Estimation of adapted u by

projection of Y onto w and nor-
malization

Uold = U

u=Yw |lul| — 1

. Repeat steps 1 and 4 until |ju—

Uold|| < €, with the user defined
threshold e.



Appendix B

(zeneral Rotations in d Dimensions

A rotation matrix M(y) is the operator which describes a rotation of any d - dimen-
sional vector x = (1, s, ...,24)" by the angle ¢, resulting in x' = (2, 75, ..., z)T.
Rotation matrices are orthogonal operators and thus preserve the length of the
rotated vectors [81].

x =Mx
MMT = (B.1)
MT =M1

The plane spanned by x and x’ is referred to as the rotation plane. The orthogonal
complement to the rotation plane, a (d-2)-dimensional subspace, is the subspace
around which the rotation by ¢ takes place. In 2D, the (d-2)-dimensional subspace
corresponds to a point, in 3D to an axis, in 4D to a 2-dimensional plane etc.
[82, 83]. This subspace can have an arbitrary orientation with respect to the axes
of the Euclidean coordinate system. If the rotation plane is spanned by any two
of the main axes X, and X, of the Euclidean coordinate system (and is this a
coordinate plane), the rotation is referred to as a standard rotation Rsiq,ap and
the matrix is given by Eq. (B.2).

Ta.a = cOS(¢p)

b = cOS(¢p)

rap = —sin(e)

Tha = Sin(y)
ri;=1 ifi#a,b

(755 = 0 elsewhere

RStd;a,b — Tij = (B.2)

To estimate the rotation matrix around an arbitrarily orientated subspace (with a
rotation plane other than a coordinate plane) the rotation can be decomposed into
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a sequence of rotations in coordinate planes!'?

The orthogonal subspace around which the rotation takes place (orthogonal com-
plement of rotation plane) is spanned by the so called simplez?

Firstly, the data are rotated in a way that the (d-2)-simplex is rotated to be aligned
with any (d-2)-dimensional subspace spanned by the main axis. In this work it is
aligned to the subspace spanned by the X; to X, o axis. This transformation is
represented by a succession of N, = w — 1 standard rotations Ry (¢ ), ke[1, Ni]
by the angle ¢y.

Rsubsp (91, ---» &n,,) = Ry (0w, ) - Ra(¢1) (B.4)

Each performed rotation transforms the simplex and thus updates the vertices
matrix to vert*~Y (for the (k-1)-th rotation). The angle ¢ for the required sub-
sequent rotation around is computed based on those updated vertices. (See [27] for
further information).

This succession of transformations rotates the rotation plane of the requested ro-
tation to the X; 1 — Xy plane. Subsequently, a rotation by ¢ is performed in this

19 Rotation matrices (orthogonal matrices with det(M) = 1) form the group SO(N). Thus, a
succession of k rotations My to My can be expressed as the multiplication of the individual
rotation matrices [81].

M =My Mg_1 ... M2 M;

20 A simplex is the simplest form of a n-dimensional polytope and can be seen as the generaliza-
tion of a triangle in two and a tetrahedron in three dimensions, respectively. A n-simplex is
described by (n+1) coordinate points, so called vertices [84].

Dim Rotation subspace (dimension) Simplex No. of vertices
3 axis (1) vector 2
4 plane (2) triangle 3
5 cube (3) tetrahedron 4

For example, a rotation in 4-D takes place around a plane. The simplex representing that
plane is a triangle. The vertices (coordinates) of that triangle can be summarized in a matrix:

ayp a2 a3 Qa4
(B.3)

vert 0) = b1 b2 b3 b4
C1 Co C3 Cq

If the triangle does not have any offset from the origin, no translation prior to rotation is
required and one vertex of the triangle already coincidence with the origin.
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rotation plane

1 0 0
0 . . :
Rstaa-1.4(p) = 1 0 (B.5)
: cos(p) —sin(p)
0 ... 0 sin(p) cos(yp)

Finally, the back transformation (transpose of Eq. (B.4)) is conducted in order to
rotate the simplex back to its original orientation [27].

Rgl]l-bSp<¢1’ s ¢Nk) = RgubSp(¢17 e ¢Nk) =

(B.6)
RT(41) - Ry, (on,)
The complete rotation can be written as a product of the individual rotations.
M = Rg&bSp(¢l7 sy ¢Nk) RStd; dfl,d(gp) RSubSp(¢l> cey ¢Nk) (B7)
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Appendix C

Staging System For Melanoma

The TNM system defines the tumor staging based on its progression in size (T: tu-
mor), affected lymph nodes (N: nodes) and distant metastasis (M: metastasis)[85].

The indicator T is defined by the Breslow depth of the melanoma:
e Tis: Melanoma in situ. Cancer cells only in the epidermis
e T1: Breslow depth less than 1mm
e T2: Breslow depth between 1 and 2 mm
e T3: Breslow depth between 2 and 4 mm
e T'4: Breslow depth larger than 4mm

Additionally, the T system often states information about the presence of ulceration
(a for an ulcerated and b for not ulcerated lesion.)

The indicator T is defined by the presence of cancer cells in the neighboring lymph
nodes and lymphatic ducts.

e NO: No melanoma cells present

e N1: Cancer cells in one lymph node

e N2: Cancer cells on 2 or 3 lymph nodes

e N3: Cancer cells in more than 3 lymph nodes

An additional label of the N system gives information about the characteristics of
the cancer cells in the lymph nodes. If the cancer cells in the lymph nodes can
only be recognized using a microscope, they are classified by the index a. If the
lymph node metastasis can be seen macroscopically, the class label b is used. The
melanoma is classified by the label c, if cancer cells can be found in the lymphatic
ducts of the skin.
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Table C.1: Melanoma staging and survival rates [85-88]

TNM AJCC Stage 5 year 10 year Survival
0 Tis NO MO 100 % 100 %

I Ia Tla NO MO 97% 95%
Ib T1b/T2a NO MO 92% 86%

11 Ila T2b/T3a NO MO 81% 67%

111 ITb T3b/T4a NO MO  70% 57%
Ilc T4c NO MO 53% 40%
ITTa T1-4a Ni1-2a MO0 78% 68%
I11b T1-4a/T1-4b  NO MO 59% 43%
I11c T1-4b NO MO  40% 24%

IAY IAY Any T Any N M1 15-20% 10-15%

The M system indicates, whether the tumor forms metastasis in other parts of the
body:

e MO: No metastases

e Mla: Melanoma cells present in skin or lymphatic organs at distant body
sites

e M1b: Melanoma cells are found in the lung

e N3: Melanoma cells are found in other organs or the lactate dehydrogenase
level of the blood is high.

Based on the T, N and M indicator a certain stage is assigned to the tumor.
An overview of the stage assignment and respective survival rates are given in

Thl. C.1
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